对数与对数的运算说课稿
“对数与对数的运算说课稿”相关的资料有哪些?“对数与对数的运算说课稿”相关的范文有哪些?怎么写?下面是小编为您精心整理的“对数与对数的运算说课稿”相关范文大全或资料大全,欢迎大家分享。
对数与对数运算学案
对数与对数运算
学习目标:知道对数的定义及其表示,知道常用对数.自然对数及其表示;会运用对数式与指数式的相互关系及其转化求值;知道对数的运算性质及其推导过程,能运用对数运算法则解决问题;会应用换底公式解决问题. 学习重点:对数的运算性质,用换底公式将一般对数转化成自然对数或常用对数 学习难点:对数的运算性质和换底公式的熟练运用 学习过程: 一 探究新知
1.思考下列问题:已知底数为2,指数为3,幂为8.
①已知底数2和指数3,得幂8,这种运算是什么运算?表示形式是什么? ②已知幂8和指数3,得底数2,这种运算是什么运算?表示形式是什么? ③已知底数2和幂8,得指数3,这种运算是什么运算?表示形式是什么?
2.归纳:一般地,如果a=b(a>0,且a≠1),那么数x叫做以a为底b的_____,记作x=logab,其中a叫做对数的________,b叫做_________. 因而,指数式a=b与对数式x=logab是等价的,本质是相同的,求对数就是求指数的运算.
对应练习:2=8转化为对数式为____________;lg100=2转化指数式为____________.
3.对于指数函数y=a (a>0,且a≠1)的定义域、值域是什么?那么对数式x
对数与对数运算测试题
高一数学必修1
对数与对数运算@测试题
时间:50分钟 满分:100分
姓名 班级 学号 分数
(每小题5分,共30分)
1.下列指数式与对数式互化中错误的一组是
A.e
1与ln1 0
1
B.8
13
12
与log
1
8
2
13
C.log
3
9 2
与9
2
3
D.log
12
7
7 1与7 7
1
2.如果log7[log3(log2x)]=0,那么x等于( ) A.
3
2
1
B.
123
C.
122
D.
133
3.
5
log
5
( a)
(a≠0)化简得结果是( )
B.a2
C.|a|
D.a
A.-a
4.已知 ab=M (a>0, b>0, M≠1), 且logM b=x,则logM a=( )。 A.1-x B.1+x C. D.x-1
x1
5.若b≠1,则 loga b等于( )。 A.-logb a B.6.
loglog
82
lgalgb
C.lg b-lg a D.
1log
b
a
93
的值为( )。
1
32
A.2 B. C. D.
2
3
2
(每小题5分,共30分)
7.若logx (2+1)=-1, 则x 8.已知f(ex)=x,则f(5)等于。
对数与对数运算、对数函数教案(含答案)
对数与对数运算
一、
复习
1.对数的定义 logaN?b 其中 a?(0,1)?(1,??)与 N?(0,??) 2.指数式与对数式的互化 ab?N?logaN?b (a?0且a?1)
3.重要公式:
⑴负数与零没有对数; ⑵loga1?0,logaa?1 ⑶对数恒等式alogaN?N am?an?am?n(m,n?R)4.指数运算法则 (a)?amnmn(m,n?R) (ab)n?an?bn(n?R)二、新授内容
1.积、商、幂的对数运算法则:
如果 a > 0,a ? 1,M > 0, N > 0 有:
loga(MN)?logaM?logaN(1)Mloga?logaM?logaN(2)
NlogaMn?nlog(3)aM(n?R)证明⑴:设logaM=p, logaN=q. 由对数的定义可以得:M=a,N=a. ∴MN= aa=aN.
证明⑵:设logaM=p,logaN=q. 由对数的定义可以得M=a,N=a .
p
qp
qp?qp
q ∴logaMN=logaap?q ∴logaMN=p+q, 即证得logaMN=logaM + logaMMMMap?p?q ∴loga?p?q
对数与对数运算、对数函数教案(含答案)
对数与对数运算
一、
复习
1.对数的定义 logaN?b 其中 a?(0,1)?(1,??)与 N?(0,??) 2.指数式与对数式的互化 ab?N?logaN?b (a?0且a?1)
3.重要公式:
⑴负数与零没有对数; ⑵loga1?0,logaa?1 ⑶对数恒等式alogaN?N am?an?am?n(m,n?R)4.指数运算法则 (a)?amnmn(m,n?R) (ab)n?an?bn(n?R)二、新授内容
1.积、商、幂的对数运算法则:
如果 a > 0,a ? 1,M > 0, N > 0 有:
loga(MN)?logaM?logaN(1)Mloga?logaM?logaN(2)
NlogaMn?nlog(3)aM(n?R)证明⑴:设logaM=p, logaN=q. 由对数的定义可以得:M=a,N=a. ∴MN= aa=aN.
证明⑵:设logaM=p,logaN=q. 由对数的定义可以得M=a,N=a .
p
qp
qp?qp
q ∴logaMN=logaap?q ∴logaMN=p+q, 即证得logaMN=logaM + logaMMMMap?p?q ∴loga?p?q
对数函数和对数运算
对数函数和对数运算
开心一刻
四十出头的莉莲心脏病突发,被送往医院急救。病情十分糟糕,莉莲感觉自己几乎都已经死了。
抢救中,莉莲突然听见了上帝的声音:“不,你不会死的,你还可以活45年6个月零两天,鼓起勇气活下去!”
当然,结果是莉莲奇迹般地被救活了。
身体复原后,莉莲想到自己还能活40多年,便没有急着出院,先是修脸,接着是补唇,然后是隆胸,最后是瘦腹,一古脑儿连续做了4个美容手术,然后又叫了专业美发师上门服务,改换了发色、做了个新潮发型,整个儿看起来年轻了十几岁。
当最后一个整形手术完成后,莉莲便高高兴兴地办理了出院手续,没想到在门口却被一辆急速驶过的救护车撞死了。
到了天堂后,莉莲生气地质问上帝:“既然你说过我还可以活45年,那么你就不应该食言。”
上帝尴尬地耸了耸肩,答道:“真是对不起,当时,车子撞你时……我没认出是你。”
一、知识点回顾
如果 a > 0,a 1,M > 0, N > 0 有:
loga(MN) logaM logaN
Mloga logaM logaN
Nn
logaM nlogaM(n R)
(1)(2) (3)
公式: 证明:设
log
b
N
log
a
N
logab
x logbN,则bx N,两边取以a为底的对数,得 logab logaN
对数的概念-说课稿
对数与对数的运算
尊敬的各位老师,大家好:
今天我说课的内容是对数的概念,下面我从教材分析、目标分析、教学程序、板书设计、评价反思五个方面汇报我对这节课的教学设想,主要阐述了教什么,怎么教,为什么这么教的问题。
一、 说教材
《§2.2.1 对数与对数运算》是人教版必修一第一章第二节的内容,本节课我要说的是第一课时,此前,学生已经学习了指数与指数函数,明白了指数运算是已知底数和指数求幂值,而对数是已知底数和幂值求指数的运算,两者是互逆的关系,而在这一章中,对数函数对于学生来说又是一个全新的函数模型,学习起来比较困难,对数函数又是本章的重要内容,它是在指数函数的基础上,对函数类型的拓广,同时在解决一些日常生活问题及科研中起十分重要的作用。因此,通过本节课的学习既加深了学生对指数的理解,又进一步深化对对数模型的认识与理解,为学习对数函数作好准备,起到了承上启下的作用,培养了学生对立统一,相互联系、相互转化的思想,并且也为高中数学探索函数定义域和值域的求解提供了一个较好的方式方法。
二、目标分析
(1) 知识目标:①理解对数的概念,了解对数运算与指数运算的互逆关系,及常用对数
和自然对数,②掌握对数式和指数式的互化。
(2) 能力目标:①培养学生分析转化
2013-2014学年高中数学教案:《对数与对数的运算》说课稿(新人教
《对数与对数运算》
1、教材的地位和作用
我们在前面的学习过程中,已了解指数函数的概念和性质,它是后续学习的基础,从本节开始我们学习对数及其运算,使学生认识引进对数的重要性,理解对数的概念及其基本运算。
教材注重从现实生活的事例中引出对数的概念,所举例子比较全面,有利于培养学生的思想素质和激发学生学习数学的兴趣和欲望。教学中要充分发挥课本中材料的作用,并联系熟悉的事例,以丰富教学的情景创设,加强数学文化的教育。
2、教学目标的确定及依据
根据教学大纲要求,结合教材,考虑到学生已有的认知结构心理特征,我制定了如下的教学目标:
(1) 知识与技能:理解对数的概念,了解对数与指数的关系,掌握对数的性质。 (2) 过程与方法:通过与指数式的比较,引出对数的定义,让学生经历通过逻辑
推理得出对数有关知识的过程。
(3) 情感态度与价值观:培养学生的类比,分析,归纳能力,严谨的思维品质,
探究意识。
3、教学重点与难点
重点:对数式与指数式的互化,对数的性质. 难点:对数概念的理解,对数性质的推导.
学生在整个教学过程中始终是认知的主体和发展的主体,教师作为学生学习的指导者,应充分地调动学生学习的积极性和主动性,有效地渗透数学思想方法.根据这样的原则和所要完
2016-2017学年一2.2.1(2)对数与对数运算学案
2.2.1(2)对数与对数运算(学生学案)
内容:对数运算法则
问:从指数与对数的关系以及指数运算性质,你能得出相应的对数运算性质吗?
回顾指数幂的运算性质:
am?an?am?n,am?an?am?n,(am)n?amn.
师生讨论:把指对数互化的式子具体化:设M?a,N?a,于是有
mnMN?am?n,M?am?n,Mn?amn.logaM?m,logaN?n. N根据对数的定义有:logaam?n?m?n,logaam?n?m?n,logaamn?mn. 于是有
例1:(课本P65例3)用logax,logay,logaz表示下列各式:
变式训练1:(课本P68练习 NO:1)
例2:(课本P65例4)求下列各式的值: (1)log2(47?25);(2)lg5100;(3)log
变式训练2:(课本P68 练习 NO:2;3)
例3:求下列各式的值:
(1)lg20?lg2; (2)lg14?2lg
33;(4)log331 277lg81?lg7?lg18;(3); 3lg9
布置作业: A组:
1、(课本P74习题2.2 A组NO:3)
2、(课本P74习题2.2 A组NO:5)
3、(tb011
对数与对数函数
???线????○???? ???线????○????
绝密★启用前
2013-2014学年度???学校5月月考卷
试卷副标题
考试范围:xxx;考试时间:100分钟;命题人:xxx 题号 得分 一 二 三 总分 注意事项:
1.答题前填写好自己的姓名、班级、考号等信息 ??○ __○?___?_?__?_?__?:?号?订考_订_?___??___??___??:级?○班_○?___?_?__?_?___??:名?装姓装_?__?_?___??___??_:校?○学○????????外内????????○○????????2.请将答案正确填写在答题卡上
第I卷(选择题)
请点击修改第I卷的文字说明 评卷人 得分 一、选择题(题型注释)
1.若f(x)??12x2?bln(x?2)在(?1,??)上是减函数,则b的取值范围是( ) A. [?1,??) B. (?1,??) C. (??,?1] D. (??,?1) 【答案】C 【解析】
试题分析:因为f(x)??12x2?bln(x?2)在(?1,??)上是减函数,所以f?(x)?0在(?1,??)恒成立,而f?(x)??x?bbx?2,所以?x?x
对数的运算法则
对数的运算法则
市级一等奖 旬阳中学 谢道仁
一、概述
对数的运算法则是北师大版高中《数学》(必修1)第三章第4.1节第(二)部分。本课需要学生掌握对数的运算法则,能初步运用对数的性质和运算法则解题;通过对法则的探究与推导,培养学生从特殊到一般的概括,归纳总结思想,使学生自主、探究地开展学习活动。
二、学习目标分析 1、知识与技能
掌握对数的运算法则,能初步运用对数的性质和运算法则解题; 2、过程与方法
通过对法则的探究与推导,培养学生从特殊到一般的概括,归纳总结思想,使学生自主、探究地开展学习活动 3、情感态度价值观
通过了解我国古代在对数研究方面的成就,激发热爱祖国,热爱
祖国悠久文化的思想感情。 [学习重点和难点]
对数的运算法则的推导和应用是本节课的重点,,法则的探究与证明是本节课的难点. 三、教学策略的选择与设计
学习过程中,通过课件创设的情境充分调动学生各知觉器官,做到"细观察、多动手、勤思考,善总结".通过观察、猜想、探究、
推理、模仿、体验,质疑等方法完成本节知识的学习。本节课采用“问题导学,自主探索,归纳总结” 的教学模式,采用情境探究法、谈话法等,使学生在自主探究的过程中完成学习的任务。 四、资源
(1)教师自制的多