spss相关分析

“spss相关分析”相关的资料有哪些?“spss相关分析”相关的范文有哪些?怎么写?下面是小编为您精心整理的“spss相关分析”相关范文大全或资料大全,欢迎大家分享。

spss相关分析

标签:文库时间:2025-03-18
【bwwdw.com - 博文网】

spss实验报告相关分析

1、掌握SPSS 软件进行简单统计分析的一般操作,并对处理结果做出解释;

2、理解相关系数、秩相关系数与偏相关系数的差异,并结合描述性统计分析,综合分析得到的结果;掌握二元变量相关分析;掌握偏相关分析;掌握距离分析;

二 实验内容

题目三:K.K.Smith在烟草杂交繁殖的花上收集到如表8.16所示的数据,要求对以上3组数据两两之

间进行相关分析,以0.05的显著性水平检验相关系数的显著性。(数据来源:《统计软件SPSS系列应用实践篇》 苏金明 ,电子工业出版社;数据文件:data8-5.sav)

实验结果分析:

由上表可知:花枝长与花瓣长的相关系数为0.995>0,说明呈正相关,而相伴概率值sig.=0.000<0.05,因此应拒绝零假设(H0:两变量之间不具相关性),即说明花枝长是受花瓣长显著性正影响的;同理可得,花萼长也是受花瓣长显著性正影响的。花瓣长与花萼长也是受花枝长显著性正影响的,花瓣长与花枝长也受花萼长显著性正影响的。这三个变量在0.05的显著性水平下是显著正相关的。

题目四:试确定1962-1988年安徽省国民收入与城乡居民储蓄存款余额两个变量间的线性相关性,数据如

表8.17所示。(数据来源:《数据统计与

相关分析与回归分析SPSS实现

标签:文库时间:2025-03-18
【bwwdw.com - 博文网】

相关分析与回归分析

一、试验目标与要求

本试验项目的目的是学习并使用SPSS软件进行相关分析和回归分析,具体包括:

(1) 皮尔逊pearson简单相关系数的计算与分析

(2) 学会在SPSS上实现一元及多元回归模型的计算与检验。 (3) 学会回归模型的散点图与样本方程图形。 (4) 学会对所计算结果进行统计分析说明。 (5) 要求试验前,了解回归分析的如下内容。 ? 参数α、β的估计

? 回归模型的检验方法:回归系数β的显著性检验(t-检验);回归

方程显著性检验(F-检验)。

二、试验原理

1.相关分析的统计学原理

相关分析使用某个指标来表明现象之间相互依存关系的密切程度。用来测度简单线性相关关系的系数是Pearson简单相关系数。

2.回归分析的统计学原理

相关关系不等于因果关系,要明确因果关系必须借助于回归分析。回归分析是研究两个变量或多个变量之间因果关系的统计方法。其基本思想是,在相关分析的基础上,对具有相关关系的两个或多个变量之间数量变化的一般关系进行测定,确立一个合适的数据模型,以便从一个已知量推断另一个未知量。回归分析的主要任务就是根据样本数据估计参数,建立回归模型,对参数和模型进行检验和判断,并进行预测等。

线性回归数学模型

第8章SPSS的相关分析 - 图文

标签:文库时间:2025-03-18
【bwwdw.com - 博文网】

第8章 SPSS的相关分析 学习目标:

1. 明确相关关系的含义以及相关分析的主要目标。

2. 掌握散点图的含义,熟练掌握绘制散点图的具体操作。

3. 理解简单相关系数、Spearman相关系数、Kendall相关系数的基本原理,熟练掌握计算

各种相关系数的具体操作,能够读懂分析结果。

4. 理解偏相关系分析的主要目标以及与相关分析之间的关系,熟练掌握偏相关分析的具体

操作,能够读懂分析结果。 8.1 相关分析

相关分析是分析客观事物之间关系的数量分析方法,明确客观事物之间有怎样的关系对理解和运用相关分析是极为重要的。

客观事物之间的关系大致可归纳为两大类关系,它们是函数关系和统计关系。相关分析是用来分析事物之间统计关系的方法。

所谓函数关系指的是两事物之间的一种一一对应的关系,即荡一个变量x取一定值时,另一变量y可以依确定的函数取唯一确定的值。例如,商品的销售额与销售量之间的关系,在单价确定时,给出销售量可以唯一地确定出销售额,销售额与销售量之间是一一对应的关系,且这个关系可以被y=Ρx(y表示销售额,Ρ表示单价,x表示销售量)这个数学函数精确地描述出来。客观世界中这样的函数关系有很多,如圆面积和圆半径、出租车费和行程公里数之间的关系等。

另一

第8章SPSS的相关分析 - 图文

标签:文库时间:2025-03-18
【bwwdw.com - 博文网】

第8章 SPSS的相关分析 学习目标:

1. 明确相关关系的含义以及相关分析的主要目标。

2. 掌握散点图的含义,熟练掌握绘制散点图的具体操作。

3. 理解简单相关系数、Spearman相关系数、Kendall相关系数的基本原理,熟练掌握计算

各种相关系数的具体操作,能够读懂分析结果。

4. 理解偏相关系分析的主要目标以及与相关分析之间的关系,熟练掌握偏相关分析的具体

操作,能够读懂分析结果。 8.1 相关分析

相关分析是分析客观事物之间关系的数量分析方法,明确客观事物之间有怎样的关系对理解和运用相关分析是极为重要的。

客观事物之间的关系大致可归纳为两大类关系,它们是函数关系和统计关系。相关分析是用来分析事物之间统计关系的方法。

所谓函数关系指的是两事物之间的一种一一对应的关系,即荡一个变量x取一定值时,另一变量y可以依确定的函数取唯一确定的值。例如,商品的销售额与销售量之间的关系,在单价确定时,给出销售量可以唯一地确定出销售额,销售额与销售量之间是一一对应的关系,且这个关系可以被y=Ρx(y表示销售额,Ρ表示单价,x表示销售量)这个数学函数精确地描述出来。客观世界中这样的函数关系有很多,如圆面积和圆半径、出租车费和行程公里数之间的关系等。

另一

相关分析和一元线性回归分析SPSS报告

标签:文库时间:2025-03-18
【bwwdw.com - 博文网】

用下面的数据做相关分析和一元线性回归分析:

选用普通高等学校毕业生数和高等学校发表科技论文数量做相关分析和一元线性回归分析。

一、相关分析

1.作散点图

普通高等学校毕业生数和高等学校发表科技论文数量的相关图

从散点图可以看出:普通高等学校毕业生数和高等学校发表科技论文数量的相关性很大。

2.求普通高等学校毕业生数和高等学校发表科技论文数量的相关系数

把要求的两个相关变量移至变量中,因为都是定距数据,选择相关系数中的Pearson,点击确定,可以得到下面的结果:

Correlations

普通高等学校毕业生数(万人) 高等学校发表科技论文数量(篇)

普通高等学校毕业生数(万人) Pearson Correlation 1 .998**

Sig. (2-tailed) .000

N 14 14

高等学校发表科技论文数量(篇) Pearson Correlation .998** 1 Sig. (2-tailed) .000

N 14 14

**. Correlation is significant at the 0.01 level (2-tailed).

两相关变量的Pearson相关系数=0.0998,表示呈高度正相关;相关系数检验对应的概率P 值=0.000

(完整版)SPSS双变量相关性分析

标签:文库时间:2025-03-18
【bwwdw.com - 博文网】

数学建模SPSS双变量相关性分析

关键词:数学建模相关性分析SPSS

摘要:在数学建模中,相关性分析是很重要的一部分,尤其是在双变量分析时,要根据变量之间的联系建立评价指标,并且通过这些指标来进行比对赋值而做出评价结果。本文由数学建模中的双变量分析出发,首先阐述最主要的三种数据分析:Pearson系数,Spearman系数和Kendall系数的原理与应用,再由实际建模问题出发,阐述整个建模过程和结果。

r s=

∑(P i?P ave)(Q i?Q ave)√∑(P i?P ave)2(Q i?Q ave)2

在SPSS中打开数据,点击:分析—>相关—>双变量,打开对话窗口,选择需要分析的两个变量、Spearman秩相关系数分析以及双侧检验。

需要说明两点:

(1)因各体重与各体质数据之间的相关性正负未知,需选用双侧检验;

(2)除了数据满足非正态分布以外,Spearman秩相关系数分析还需要数据分级,以计算秩。但在SPSS中程序会自动生成秩,无需再手动分级。

注意要保证总体相关系数ρ与样本相关系数r保持一致,还须考虑Sig值。

由数据,Sig<0.5表示接受原假设,即Rho>|r|。Sig

SPSS案例分析

标签:文库时间:2025-03-18
【bwwdw.com - 博文网】

某道路弯道处53车辆减速前观测到的车辆运行速度,试检验车辆运行速度是否服从正态分布。

这道题目的解答可以先通过绘制样本数据的直方图、P-P图和Q-Q图坐车粗略判断,然后利用非参数检验的方法中的单样本K-S检验精确实现。 一、初步判断

1.1绘制直方图

(1)操作步骤

在SPSS软件中的操作步骤如图所示。

(2)输出结果

通过观察速度的直方图及其与正态曲线的对比,直观上可以看到速度的直方图与正太去线除了最大值外,整体趋势与正态曲线较吻合,说明弯道处车辆减速前的运行速度有可能符合正态分布。 1.2绘制P-P图

(1)操作步骤

在SPSS软件中的操作步骤如图所示。

(2)结果输出

根据输出的速度的正态P-P图,发现速度均匀分布在正态直线的附近,较多部分与正态直线重合,与直方图的结果一致,说明弯道处车辆减速前的运行速度可能服从正态分布。

二、单样本K-S检验

2.1单样本K-S检验的基本思想

K-S检验能够利用样本数据推断样本来自的总体是否服从某一理论分布,是一种拟合优的检验方法,适用于探索连续型随机变量的分布。

单样本K-S检验的原假设是:样本来自的总体与指定的理论分布无显著差异,即样本来自的总体服从指定的理论分布。SPSS的理论分布主要包括正态分

SPSS分析报告实例

标签:文库时间:2025-03-18
【bwwdw.com - 博文网】

SPSS与数据统计分析期末论文

影响学生对学校服务满意程度的因素分析

一、 数据来源

本次数据主要来源自本校同学,调查了同学们年级、性别、助学金申请情况、生源所在地、学院、毕业学校、游历情况、家庭情况、升高、体重、近视程度、学习时间、经济条件、兴趣、对学校各方面的评价、与对学校总评价以及建议等共41条信息,共收集数据样本724条。我们将运用SPSS,对变量进行频数分析、样本T检验、相关分析等手段,旨在了解同学们对学校提供的满意程度与什么因素有关。

二、 频数分析

可靠性统计

克隆巴赫 Alpha

.985

项数 62

对全体数值进行可信度分析

本次数据共计724条,首先从可靠性统计来看,alpha值为0.985,即全体数据绝大部分是可靠的,我们可以在原始数据的基础上进行分析与处理。

其中,按年级来看,绝大多数为大二学生填写(占了总人数的67.13%),之后分别依次为大二(23.76%)、大四(4.14%)、大一(4.97%)。而从专业来看,占据了数据绝大多数样本所在的学院为机械、材料、经管、计通。

三、 数据预处理

拿到这份诸多同学填写的问卷之后,我们首先应对一些数据进行处理,对于数据的缺失值处理,由于我们对本份调查的分析重点方面是关于学生

SPSS分析报告实例

标签:文库时间:2025-03-18
【bwwdw.com - 博文网】

SPSS与数据统计分析期末论文

影响学生对学校服务满意程度的因素分析

一、 数据来源

本次数据主要来源自本校同学,调查了同学们年级、性别、助学金申请情况、生源所在地、学院、毕业学校、游历情况、家庭情况、升高、体重、近视程度、学习时间、经济条件、兴趣、对学校各方面的评价、与对学校总评价以及建议等共41条信息,共收集数据样本724条。我们将运用SPSS,对变量进行频数分析、样本T检验、相关分析等手段,旨在了解同学们对学校提供的满意程度与什么因素有关。

二、 频数分析

可靠性统计

克隆巴赫 Alpha

.985

项数 62

对全体数值进行可信度分析

本次数据共计724条,首先从可靠性统计来看,alpha值为0.985,即全体数据绝大部分是可靠的,我们可以在原始数据的基础上进行分析与处理。

其中,按年级来看,绝大多数为大二学生填写(占了总人数的67.13%),之后分别依次为大二(23.76%)、大四(4.14%)、大一(4.97%)。而从专业来看,占据了数据绝大多数样本所在的学院为机械、材料、经管、计通。

三、 数据预处理

拿到这份诸多同学填写的问卷之后,我们首先应对一些数据进行处理,对于数据的缺失值处理,由于我们对本份调查的分析重点方面是关于学生

SPSS - 方差分析

标签:文库时间:2025-03-18
【bwwdw.com - 博文网】

第6章 方差分析

6.1实验目的

在现实生活中,影响具体某个事物的因素往往很多,我们常常需要正确确定哪些因素的影响是显著的,方差分析(简称为ANOVA)就是解决这一问题的有效方法。由于方差分析在统计分析工作中,是不可或缺的关键性的一个环节,因此掌握方差分析的原理及方法使非常必要的。本实验的目的在于利用方差分析(简称为ANOVA)来进行相关的假设检验和统计决策。具体有以下三个方面:

1.帮助学生深入了解理解方差及方差分析的基本概念,掌握方差分析的基本思想和原理。理解总离差(SST)、组间平方和(SSR)、组内平方和或残差平方和(SSE)、组间均方差(MSR)、组内均方差(MSE)、自由度、F统计量等基本概念及其相互关系。

2.掌握方差分析的过程:One-Way过程:单因素简单方差分析过程。在Compare Means菜单项中,可以进行单因素方差分析、均值多重比较和相对比较;General Linear Model(简称GLM)过程:GLM过程由Analyze菜单直接调用。这些过程可以完成简单的多因素方差分析和协方差分析,不但可以分析各因素的主效应,还可以分析各因素间的交互效应。

3.增强学生的实践能力,使学生能够利用SPSS统计软件,熟练