时变参数向量自回归模型
“时变参数向量自回归模型”相关的资料有哪些?“时变参数向量自回归模型”相关的范文有哪些?怎么写?下面是小编为您精心整理的“时变参数向量自回归模型”相关范文大全或资料大全,欢迎大家分享。
向量自回归模型简介
一、Var模型的基本介绍
向量自回归模型(Vector Autoregressive Models,VAR)最早由Sims(1980)提出。他认为,如果模型设定和识别不准确,那么模型就不能准确地反应经济系统的动态特性,也不能很好地进行动态模拟和政策分析。因此,VAR模型通常使用最少的经济理论假设,以时间序列的统计特征为出发点,通常对经济系统进行冲击响应(Impulse-Response)分析来了解经济系统的动态特性和冲击传导机制。由于VAR模型侧重于描述经济的动态特性,因而它不仅可以验证各种经济理论假设,而且在政策模拟上具有优越性。
VAR模型主要用于替代联立方程结构模型,提高经济预测的准确性。用联立方程模型研究宏观经济问题,是当前世界各国经济学者的一种通用做法,它把理论分析和实际统计数据结合起来,利用现行回归或非线性回归分析方法,确定经济变量之间的结构关系,构成一个由若干方程组成的模型系统。联立方程模型适合于经济结构分析,但不适合于预测:联立方程模型的预测结果的精度不高,其主要原因是需要对外生变量本身进行预测。与联立方程模型不同,VAR模型相对简洁明了,特别适合于中短期预测。目前,VAR模型在宏观经济和商业金融预测等领域获得了广泛应用。
向量自回归模型简介
一、Var模型的基本介绍
向量自回归模型(Vector Autoregressive Models,VAR)最早由Sims(1980)提出。他认为,如果模型设定和识别不准确,那么模型就不能准确地反应经济系统的动态特性,也不能很好地进行动态模拟和政策分析。因此,VAR模型通常使用最少的经济理论假设,以时间序列的统计特征为出发点,通常对经济系统进行冲击响应(Impulse-Response)分析来了解经济系统的动态特性和冲击传导机制。由于VAR模型侧重于描述经济的动态特性,因而它不仅可以验证各种经济理论假设,而且在政策模拟上具有优越性。
VAR模型主要用于替代联立方程结构模型,提高经济预测的准确性。用联立方程模型研究宏观经济问题,是当前世界各国经济学者的一种通用做法,它把理论分析和实际统计数据结合起来,利用现行回归或非线性回归分析方法,确定经济变量之间的结构关系,构成一个由若干方程组成的模型系统。联立方程模型适合于经济结构分析,但不适合于预测:联立方程模型的预测结果的精度不高,其主要原因是需要对外生变量本身进行预测。与联立方程模型不同,VAR模型相对简洁明了,特别适合于中短期预测。目前,VAR模型在宏观经济和商业金融预测等领域获得了广泛应用。
非参数回归模型与半参数回归模型
第七章 非参数回归模型与半参数回归模型
第一节 非参数回归与权函数法
一、非参数回归概念
前面介绍的回归模型,无论是线性回归还是非线性回归,其回归函数形式都是已知的,只是其中参数待定,所以可称为参数回归。参数回归的最大优点是回归结果可以外延,但其缺点也不可忽视,就是回归形式一旦固定,就比较呆板,往往拟合效果较差。另一类回归,非参数回归,则与参数回归正好相反。它的回归函数形式是不确定的,其结果外延困难,但拟合效果却比较好。
设Y是一维观测随机向量,X是m维随机自变量。在第四章我们曾引进过条件期望作回归函数,即称
g (X) = E (Y|X) (7.1.1)
为Y对X的回归函数。我们证明了这样的回归函数可使误差平方和最小,即
E[Y?E(Y|X)]2?minE[Y?L(X)]2
L (7.1.2)
这里L是关于X的一切函数类。当然,如果限定L是线性函数类,那么g (X)就是线性回归函数了。
细心的读者会在这里立即提出一个问题。既然对拟合函数类L(X)没有任何限制,那么可以使误差平方和等于0。实际上,你只要作一条折线(曲面)通过所有观测点(Yi,Xi)就可以了是的,对拟合函数类不作任何限制是完全没有意义的。
第二十章 向量自回归和误差修正模型
Eviews软件用法的实例
第二十章 向量自回归和误差修正模型
联立方程组的结构性方法是用经济理论来建立变量之间关系的模型。但是,经济理论通常并不足以对变量之间的动态联系提供一个严密的说明。并且,内生变量既可以出现在等式的左端又可以出现在等式的右端使得估计和推断更加复杂。为解决这些问题产生了一种用非结构性方法来建立各个变量之间关系的模型。就是这一章讲述的向量自回归模型(Vector Auto regression, VAR)以及向量误差修正模型(Vector Error Correction, VEC)的估计与分析。同时给出一些检验几个非稳定变量之间协整关系的工具。
§20.1 向量自回归理论
向量自回归(VAR)常用于预测相互联系的时间序列系统以及分析随机扰动对变量系统的动态影响。VAR方法通过把系统中每一个内生变量作为系统中所有内生变量的滞后值的函数来构造模型,从而回避了结构化模型的需要。一个VAR(p) 模型的数学形式是:
yt A1yt 1 Apyt p Bxt t (20.1)
这里yt是一个k维的内生变量,xt是一个d维的外生变量。A1, ,AP和B是要被估
非参数回归模型与半参数回归模型
1
第七章 非参数回归模型与半参数回归模型
第一节 非参数回归与权函数法
一、非参数回归概念
前面介绍的回归模型,无论是线性回归还是非线性回归,其回归函数形式都是已知的,只是其中参数待定,所以可称为参数回归。参数回归的最大优点是回归结果可以外延,但其缺点也不可忽视,就是回归形式一旦固定,就比较呆板,往往拟合效果较差。另一类回归,非参数回归,则与参数回归正好相反。它的回归函数形式是不确定的,其结果外延困难,但拟合效果却比较好。
设Y 是一维观测随机向量,X 是m 维随机自变量。在第四章我们曾引进过条件期望作回归函数,即称
g (X ) = E (Y |X ) (7.1.1)
为Y 对X 的回归函数。我们证明了这样的回归函数可使误差平方和最小,即
22)]([min )]|([X L Y E X Y E Y E L -=- (7.1.2)
这里L 是关于X 的一切函数类。当然,如果限定L 是线性函数类,那么g (X )就是线性回归函数了。
细心的读者会在这里立即提出一个问题。既然对拟合函数类L (X )没有任何限制,那么可以使误差平方和等于0。实际上,你只要作一条折线(曲面)通过所有观测点(Y i ,X i )就可以了是的,对拟合函数
自回归AR模型、移动平均MA模型与自回归移动平均ARMA模型的比较分析
自回归AR模型、移动平均MA模型与自回归移动平均ARMA模型的比较分析
系统中某一因素变量的时间序列数据没有确定的变化形式,也不能用时间的确定函数描述,但可以用概率统计方法寻求比较合适的随机模型近似反映其变化规律。(自变量不直接含有时间变量,但隐含时间因素)
1. 自回归AR(p)模型
(R:模型的名称 P:模型的参数)(自己影响自己,但可能存在误差,误差即没有考虑到的因素)
(1)模型形式(εt越小越好,但不能为0:ε为0表示只受以前Y的历史的影响不受其他因素影响)
yt=φ1yt-1+φ2yt-2+……+φpyt-p+εt
式中假设:yt的变化主要与时间序列的历史数据有关,与其它因素无关;
εt不同时刻互不相关,εt与yt历史序列不相关。 式中符号:p模型的阶次,滞后的时间周期,通过实验和参数确定; yt当前预测值,与自身过去观测值yt-1、…、yt-p是同一序列不同时刻的随机变量,相互间有线性关系,也反映时间滞后关系; yt-1、yt-2、……、yt-p同一平稳序列过去p个时期的观测值; φ1、φ2、……、φp自回归系数,通过计算得出的权数,表达yt依赖于过去的程度,且这种依赖关系恒
第22章 向量自回归和误差 - 图文
第二十二章向量自回归和误差修正模型联立方程组的结构性方法是用经济理论来建立变量之间关系的模型。但是,经济理论通常并不足以对变量之间的动态联系提供一个严密的说明。并且,内生变量既可以出现在等式的左端又可以出现在等式的右端使得估计和推断更加复杂。为解决这些问题产生了一种用非结构性方法来建立各个变量之间关系的模型,就是这一章所讲述的向量自回归模型(VectorAutoregression,VAR)以及向量误差修正模型(VectorErrorCorrection,VEC)的估计与分析。同时也给出一些检验几个非稳定变量之间协整关系的工具。1§22.1向量自回归理论向量自回归(VAR)常用于预测相互联系的时间序列系统以及分析随机扰动对变量系统的动态影响。VAR方法通过把系统中每一个内生变量作为系统中所有内生变量的滞后值的函数来构造模型,从而回避了结构化模型的需要。一个VAR(p)模型的数学形式是:yt?A1yt?1?????Apyt?p?Bxt??t(22.1)这里yt是一个k维的内生变量,xt是一个d维的外生变量。A1,…,Ap和B是待估计的系数矩阵。?t是扰动向量,它们相互之间可以同期相关,但不与自己的滞后值相关及不与等式右边的变量相关。2?y1t?
第七章 分布滞后模型与自回归模型 思考题
第七章 分布滞后模型与自回归模型 思考题
7.1 什么是滞后现象 ? 产生滞后现象的原因主要有哪些 ?
7.2 对分布滞后模型进行估计存在哪些困难 ? 实际应用中如何处理这些难 ?
7.3 库伊克模型、自造应预期模型与局部调整模型有哪些共性和不同之处 ? 模型估计会存在哪些困难 ? 如何解决 ? 7.4 考虑以下模型
Yt????1X1t??2X2t??3Yt?1?ut
假定Yt?1和ut相关。为了消除相关,采用如下工具变量法:先求Yt对X1t和X2t的回
?, 然后做以下回归 归 , 得到Y的估计值Yt??u Yt????1X1t??2X2t??3Yt?1t?是第一步粗估计值Y?的滞后值。分析说明该方法为什么可以消除原其中 , Yt?1t模型中Yt?1和ut之间的相关性。
7.5 检验一阶自回归模型随机扰动项是否存在自相关 , 为什么用德宾h检验而不用 DW 检验 ?
练习题
7.1表7.11给出了1970~1987年美国的个人消费支出(PCE)和个人可支配收入(PDI)数据,所有数字的单位都是10亿美元(1982年的美元价)。
表7.1 1970-1987年美国个人消息支出PCE和个人
第七章 分布滞后模型与自回归模型 思考题
第七章 分布滞后模型与自回归模型 思考题
7.1 什么是滞后现象 ? 产生滞后现象的原因主要有哪些 ?
7.2 对分布滞后模型进行估计存在哪些困难 ? 实际应用中如何处理这些难 ?
7.3 库伊克模型、自造应预期模型与局部调整模型有哪些共性和不同之处 ? 模型估计会存在哪些困难 ? 如何解决 ? 7.4 考虑以下模型
Yt????1X1t??2X2t??3Yt?1?ut
假定Yt?1和ut相关。为了消除相关,采用如下工具变量法:先求Yt对X1t和X2t的回
?, 然后做以下回归 归 , 得到Y的估计值Yt??u Yt????1X1t??2X2t??3Yt?1t?是第一步粗估计值Y?的滞后值。分析说明该方法为什么可以消除原其中 , Yt?1t模型中Yt?1和ut之间的相关性。
7.5 检验一阶自回归模型随机扰动项是否存在自相关 , 为什么用德宾h检验而不用 DW 检验 ?
练习题
7.1表7.11给出了1970~1987年美国的个人消费支出(PCE)和个人可支配收入(PDI)数据,所有数字的单位都是10亿美元(1982年的美元价)。
表7.1 1970-1987年美国个人消息支出PCE和个人
Logistic回归模型
Logistic回归模型
1 Logistic回归模型的基本知识 1.1 Logistic模型简介
主要应用在研究某些现象发生的概率p,比如股票涨还是跌,公司成功或失败的概率,以及讨论概率
p与那些因素有关。显然作为概率值,一定有0?p?1,因此很难用线性模型描述概率p与自变量的关
系,另外如果p接近两个极端值,此时一般方法难以较好地反映p的微小变化。为此在构建p与自变量关系的模型时,变换一下思路,不直接研究p,而是研究p的一个严格单调函数G(p),并要求G(p)在p接近两端值时对其微小变化很敏感。于是Logit变换被提出来:
Logit(p)?lnp1?p (1)
其中当p从0?1时,Logit(p)从?????,这个变化范围在模型数据处理上带来很大的方便,
解决了上述面临的难题。另外从函数的变形可得如下等价的公式:
Logit(p)?lnp1?p??XT?p?e?TXT1?e? (2)
X 模型(2)的基本要求是,因变量是个二元变量,仅取0或1两个值,而因变量取1的概率P(y?1|X)T就是模型要研究的对象。而X?(1,x1,x2,?,xk),其中xi表示影响y