高中数学必修二复数知识点归纳
“高中数学必修二复数知识点归纳”相关的资料有哪些?“高中数学必修二复数知识点归纳”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高中数学必修二复数知识点归纳”相关范文大全或资料大全,欢迎大家分享。
高中数学复数知识点及练习
【1】复数的基本概念
(1)形如a + bi的数叫做复数(其中a,b R);复数的单位为i,它的平方等于-1,即i2 1.其中a叫做复数的实部,b叫做虚部。 实数:当b = 0时复数a + bi为实数; 虚数:当b 0时的复数a + bi为虚数;
纯虚数:当a = 0且b 0时的复数a + bi为纯虚数 (2)两个复数相等的定义:
R)特别地a bi 0 a b 0 a bi c di a c且b d(其中,a,b,c,d,
(3)共轭复数:z a bi的共轭记作 a bi;
(4)复平面:建立直角坐标系来表示复数的平面叫复平面;z a bi,对应点坐标为
p a,b ;(象限的复习)
(5)复数的模:对于复数z a
bi,把z z的模; 【2】复数的基本运算 设z1 a1 b1i,z2 a2 b2i
(1) 加法:z1 z2 a1 a2 b1 b2 i; (2) 减法:z1 z2 a1 a2 b1 b2 i;
(3) 乘法:z1 z2 a1a2 b1b2 a2b1 a1b2 i 特别z a2 b2。 (4)幂运算:i1 ii2 1i3 ii4 1i5 ii6 1
【3】复数的化简
c diz a,b是均不为0的实数)的化简就是
高中数学复数知识点及练习
【1】复数的基本概念
(1)形如a + bi的数叫做复数(其中a,b R);复数的单位为i,它的平方等于-1,即i2 1.其中a叫做复数的实部,b叫做虚部。 实数:当b = 0时复数a + bi为实数; 虚数:当b 0时的复数a + bi为虚数;
纯虚数:当a = 0且b 0时的复数a + bi为纯虚数 (2)两个复数相等的定义:
R)特别地a bi 0 a b 0 a bi c di a c且b d(其中,a,b,c,d,
(3)共轭复数:z a bi的共轭记作 a bi;
(4)复平面:建立直角坐标系来表示复数的平面叫复平面;z a bi,对应点坐标为
p a,b ;(象限的复习)
(5)复数的模:对于复数z a
bi,把z z的模; 【2】复数的基本运算 设z1 a1 b1i,z2 a2 b2i
(1) 加法:z1 z2 a1 a2 b1 b2 i; (2) 减法:z1 z2 a1 a2 b1 b2 i;
(3) 乘法:z1 z2 a1a2 b1b2 a2b1 a1b2 i 特别z a2 b2。 (4)幂运算:i1 ii2 1i3 ii4 1i5 ii6 1
【3】复数的化简
c diz a,b是均不为0的实数)的化简就是
高中数学必修1-5知识点归纳
第一章、集合与函数概念 §1.1.1、集合
1、 把研究的对象统称为体叫做集合。集合三要素:确定性、互异性、无序性。
2、 只要构成两个集合的元素是一样的,就称这两个
集合相等。 3、 常见集合:正整数集合:N*或N ,整数集合:
f x1 f x2 =…
§1.3.2、奇偶性
1、 一般地,如果对于函数f x 的定义域内任意一个
x,都有f x f x ,那么就称函数f x 为
偶函数.偶函数图象关于y轴对称.
2、 一般地,如果对于函数f x 的定义域内任意一个
Z,:Q,:R.
4、集合的表示方法:列举法、描述法. §1.1.2、集合间的基本关系
1、 一般地,对于两个集合A、B,如果集合A中任
意一个元素都是集合B中的元素,则称集合A是集合B的子集。记作A B.
2、 如果集合A B,但存在元素x B,且x A,则称集合A是集合B的真子集.记作:AB.
.并规定:3、 把不含任何元素的集合叫做记作:
空集合是任何集合的子集. 4、 如果集合A中含有n个元素,则集合A有2个子集.
§1.1.3、集合间的基本运算
1、 一般地,由所有属于集合A或集合B的元素组成
的集合,称为集合A与B的并集.记作:A B. 2、 一般地,由属于
高中数学必修二知识点讲解
人教版高中数学必修2知识点
第一章 空间几何体
1.1柱、锥、台、球的结构特征
1.2空间几何体的三视图和直观图
1 三视图:
正视图:从前往后 侧视图:从左往右 俯视图:从上往下
2 画三视图的原则:
长对齐、高对齐、宽相等
3直观图:斜二测画法
4斜二测画法的步骤:
(1).选取适当的直角标系,画45°角的斜坐标系,标上对应点。
(2).平行于坐标轴的线依然平行于坐标轴;
(3).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变;
5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图
1.3 空间几何体的表面积与体积
(一 )空间几何体的表面积
1棱柱、棱锥的表面积: 各个面面积之和
2 圆柱的表面积
3 圆锥的表面积2
r rl S ππ+=
4 圆台的表面积22R Rl r rl S ππππ+++=
5 球的表面积24R S π= (二)空间几何体的体积
1柱体的体积 h S V ?=底
2锥体的体积 h S V ?=底3
1 3台体的体积 h S S S S V ?++=)3
1下下上上( 4球体的体积 33
4R V π=
第二章 直线与平面的位置关系
2.1空间点、直线、平面之间的位置关系
2
22r rl S ππ
高中数学必修1-5知识点归纳
第一章、集合与函数概念 §1.1.1、集合
1、 把研究的对象统称为体叫做集合。集合三要素:确定性、互异性、无序性。
2、 只要构成两个集合的元素是一样的,就称这两个
集合相等。 3、 常见集合:正整数集合:N*或N ,整数集合:
f x1 f x2 =…
§1.3.2、奇偶性
1、 一般地,如果对于函数f x 的定义域内任意一个
x,都有f x f x ,那么就称函数f x 为
偶函数.偶函数图象关于y轴对称.
2、 一般地,如果对于函数f x 的定义域内任意一个
Z,:Q,:R.
4、集合的表示方法:列举法、描述法. §1.1.2、集合间的基本关系
1、 一般地,对于两个集合A、B,如果集合A中任
意一个元素都是集合B中的元素,则称集合A是集合B的子集。记作A B.
2、 如果集合A B,但存在元素x B,且x A,则称集合A是集合B的真子集.记作:AB.
.并规定:3、 把不含任何元素的集合叫做记作:
空集合是任何集合的子集. 4、 如果集合A中含有n个元素,则集合A有2个子集.
§1.1.3、集合间的基本运算
1、 一般地,由所有属于集合A或集合B的元素组成
的集合,称为集合A与B的并集.记作:A B. 2、 一般地,由属于
高中数学必修5知识点
篇一:高中数学必修5知识点总结(精品)
必修5知识点总结
1、正弦定理:在???C中,a、b、c分别为角?、?、C的对边,R为???C的外接圆的半径,则有
abc
???2R. sin?sin?sinC
2、正弦定理的变形公式:①a?2Rsin?,b?2Rsin?,c?2RsinC;
abc,sin??,sinC?;③a:b:c?sin?:sin?:sinC; 2R2R2Ra?b?cabc
???④.
sin??sin??sinCsin?sin?sinC
②sin??
(正弦定理主要用来解决两类问题:1、已知两边和其中一边所对的角,求其余的量。2、已知两角和一边,求其余的量。)
⑤对于已知两边和其中一边所对的角的题型要注意解的情况。(一解、两解、无解三中情况) 如:在三角形ABC中,已知a、b、A(A为锐角)求B。具体的做法是:数形结合思想 画出图:法一:把a扰着C点旋转,看所得轨迹以AD有无交点:
当无交点则B无解、 当有一个交点则B有一解、 当有两个交点则B有两个解。 法二:是算出CD=bsinA,看a的情况: 当a<bsinA,则B无解
当bsinA<a≤b,则B有两解 当a=bsinA或a>b时,B有一解
注:当A为钝角或是直角时以此类推既可。
高中数学重点必修知识点
高中数学
高中数学重点必修知识点解读
必修一
1集合间交、并、补的运算(包含给出数字的集合,不等式的集合)
2函数的定义域:分母,偶次根式,对数的真数
3分段函数:知自变量求函数值、知函数值求自变量
4函数的单调性的证明
5函数奇偶性的判断(记住几个特殊函数的奇偶性)
6指数和对数的运算(熟练运算性质)
7指数函数,对数函数的图像和性质(对图像和单调性的区分,应用特别注意)
8幂函数的定义
9方程根和函数零点的求解以及判断零点在那个区间,并和二分法联系起来
10函数的应用(注重二次函数,均值函数,三角函数这三个)
必修二
1三视图的认识(由三视图求相应几何体的体积,表面积等)
2线面平行,面面平行的判定(证明题)
3线面垂直,面面垂直的判定(证明题)
4异面直线所成角,直线和平面所成角,二面角的求解
5各种判定定理,性质定理,性质的符号语言出现的命题判断
6直线的倾斜角和斜率(一是角求斜率,二是由斜率求角)
7求直线的方程(一般是两个方向:一是知点和斜率,而是知两点。但也不排除已知其它条件求直线方程,如与截距相关联;与圆相联系。应对五种直线形式非常熟悉)
8两直线平行的判定(一是斜率法,二是系数法。包括求平行直线,或已知两直线平行求相关系数的值)
9两直线垂直的判定(一是斜率法,二是系
高中数学重点必修知识点
高中数学
高中数学重点必修知识点解读
必修一
1集合间交、并、补的运算(包含给出数字的集合,不等式的集合)
2函数的定义域:分母,偶次根式,对数的真数
3分段函数:知自变量求函数值、知函数值求自变量
4函数的单调性的证明
5函数奇偶性的判断(记住几个特殊函数的奇偶性)
6指数和对数的运算(熟练运算性质)
7指数函数,对数函数的图像和性质(对图像和单调性的区分,应用特别注意)
8幂函数的定义
9方程根和函数零点的求解以及判断零点在那个区间,并和二分法联系起来
10函数的应用(注重二次函数,均值函数,三角函数这三个)
必修二
1三视图的认识(由三视图求相应几何体的体积,表面积等)
2线面平行,面面平行的判定(证明题)
3线面垂直,面面垂直的判定(证明题)
4异面直线所成角,直线和平面所成角,二面角的求解
5各种判定定理,性质定理,性质的符号语言出现的命题判断
6直线的倾斜角和斜率(一是角求斜率,二是由斜率求角)
7求直线的方程(一般是两个方向:一是知点和斜率,而是知两点。但也不排除已知其它条件求直线方程,如与截距相关联;与圆相联系。应对五种直线形式非常熟悉)
8两直线平行的判定(一是斜率法,二是系数法。包括求平行直线,或已知两直线平行求相关系数的值)
9两直线垂直的判定(一是斜率法,二是系
人教版:高中数学必修+选修全部知识点精华归纳总结
高中数学必修+选修知识点归纳
新课标人教A版
引言
1.课程内容:
必修课程由5个模块组成:
必修1:集合、函数概念与基本初等函数(指、对、幂函数)
必修2:立体几何初步、平面解析几何初步。必修3:算法初步、统计、概率。
必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。
必修5:解三角形、数列、不等式。
以上是每一个高中学生所必须学习的。
上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。
此外,基础内容还增加了向量、算法、概率、统计等内容。
选修课程有4个系列:
系列1:由2个模块组成。
选修1—1:常用逻辑用语、圆锥曲线与方程、
导数及其应用。
选修1—2:统计案例、推理与证明、数系的扩
充与复数、框图
系列2:由3个模块组成。
选修2—1:常用逻辑用语、圆锥曲线与方程、
空间向量与立体几何。
选修2—2:导数及其应用,推理与证明、数系
的扩充与复数
选修2—3:计数原理、随机变量及其分布列,
统计案例。
系列3:由6个专题组成。
选修3—1:数学史选讲。
选修3—2:信息安全与密码。
最全高中数学必修三知识点总结归纳(经典版)
最全高中数学
(经典版)
第一章算法初步
1.1.1 算法的概念
1、算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.
2. 算法的特点:
(1) 有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.
(2) 确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.
(3) 顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.
(4) 不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.
(5) 普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.
1.1.2 程序框图
1、程序框图基本概念:
(一) 程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。
一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文
字说明。
学习这部分知识的