正弦函数余弦函数图像的应用
“正弦函数余弦函数图像的应用”相关的资料有哪些?“正弦函数余弦函数图像的应用”相关的范文有哪些?怎么写?下面是小编为您精心整理的“正弦函数余弦函数图像的应用”相关范文大全或资料大全,欢迎大家分享。
正弦函数余弦函数的图像说课
《正弦函数、余弦函数的图象》说课 大庆实验中学 郝明泉 今天我说课的题目是正弦函数、余弦函数的图象,我将从下面五个方面来进行说课。
一 教材结构与内容分析: 1) 教材中的地位与作用
《正弦函数、余弦函数的图象》是人教A版教科书,必修4第1章第4节第一课时内容,是在学生已掌握了一些基本函数的图象及其画法的基础上,进一步研究三角函数图象画法的一节课。主要学习用正弦线画出正弦函数图象,并在此基础上由诱导公式及图象变换得到余弦函数的图象,以及用“五点法”画出正弦函数和余弦函数图像的简图,并会用这一方法画出与正、余弦函数有关的某些简单三角函数在一个周期内的简图。为进一步学习正、余弦函数及正弦型函数y?Asin(?x??)的图象,运用数形结合思想研究三角函数的性质奠定坚实的知识基础。对知识的掌握起到了承上启下的作用,在整个三角知识体系里占据着重要地位。 2)
教学目标
依据教学大纲及教学目标的要求,同时考虑到图像对于培养学生数形结合思想的重要性,我确定本节课的教学目标如下: 知识与技能目标:
能刻画正弦函数、余弦函数的图像。能用“五点法”
正弦函数余弦函数的图像和性质(2)
第二课时 正弦函数、余弦函数的图象与性质(二)
(一)复习与引入 上节课,我们学习了两种作正余弦函数的图象的方法,其中我们经常要用到的是五点法作图。(一图了事)
教师在黑板上用五点法画出函数y=sinx,y=cosx的图象(列表、描点、连线),同时说明五个关键点的坐标。强调作正余弦函数要抓住五个关键点。 (二)新课
一、正余弦函数作图 例1 画出下列函数的简图 (1)y=1+sinx,x∈[0,2π]; 说明:
1、第(1)题由教师演示(列表,描点,作图),第(2)题由学生自行完成,教师校对; 2、作正弦、余弦函数的图象必须抓住五个关键点;
3、第(1)题中的函数与函数y=sinx,x∈[0,2π]的图象之间有何关系?(由函数y=sinx,x∈[0,2π]上的每一点向上平移一个单位长度或图象向上平移一个单位长度)第(2)题中的函数与函数y=cosx,x∈[0,2π]的图象之间有何关系?(关于x轴对称)
4、口答:请根据函数y=sinx,y=cosx的图象,画出函数y=sinx-1,y=1-cosx的图象。 5、推广并归纳:y=sinx+m,y=cosx+n可由y=sinx,y=cosx经过怎样的变换而得到?(在y轴上平行移动)若在自变量
正弦函数余弦函数的图像和性质(2)
第二课时 正弦函数、余弦函数的图象与性质(二)
(一)复习与引入 上节课,我们学习了两种作正余弦函数的图象的方法,其中我们经常要用到的是五点法作图。(一图了事)
教师在黑板上用五点法画出函数y=sinx,y=cosx的图象(列表、描点、连线),同时说明五个关键点的坐标。强调作正余弦函数要抓住五个关键点。 (二)新课
一、正余弦函数作图 例1 画出下列函数的简图 (1)y=1+sinx,x∈[0,2π]; 说明:
1、第(1)题由教师演示(列表,描点,作图),第(2)题由学生自行完成,教师校对; 2、作正弦、余弦函数的图象必须抓住五个关键点;
3、第(1)题中的函数与函数y=sinx,x∈[0,2π]的图象之间有何关系?(由函数y=sinx,x∈[0,2π]上的每一点向上平移一个单位长度或图象向上平移一个单位长度)第(2)题中的函数与函数y=cosx,x∈[0,2π]的图象之间有何关系?(关于x轴对称)
4、口答:请根据函数y=sinx,y=cosx的图象,画出函数y=sinx-1,y=1-cosx的图象。 5、推广并归纳:y=sinx+m,y=cosx+n可由y=sinx,y=cosx经过怎样的变换而得到?(在y轴上平行移动)若在自变量
3.6正弦函数、余弦函数的图像和性质
3.6正弦函数、余弦函数的图像和性质
教学目标:
1.会用单位圆中的三角函数线画出正弦函数的图像,并在此基础上由诱导公式画出余弦函数的图像;
2.简化正弦、余弦函数的绘制过程,会用“五点法”画出正弦函数、余弦函数的简图;
3.了解周期函数与最小正周期的意义,会求y=Asin(ωx+ψ)的周期;
4.通过正弦、余弦函数图像理解正弦函数、余弦函数的性质,培养学生的数形结合的能力。
教学重点:正弦函数、余弦函数的图象形状及其主要性质(包括定义域、值域、周期性、奇偶性、单调性)
教学难点:1.利用正弦线画出函数y=sinx,x∈[0,2π]的图象; 2.利用正弦曲线和诱导公式画出余弦曲线; 3.周期函数与(最小正)周期的意义。 教学过程:
一、复习引入:
1.引进弧度制以后,y=sinx和y=cosx都可以看做是定义域为(-∞,+∞)的实变量函数。作为函数,我们首先要关注其图像特征。本节课我们一起来学习作正、余弦函数图像的方法。
2.复习正弦线、余弦线的概念
前面我们已经学习过三角函数线的概念及作法,请同学们回忆一下什么叫正弦线?什么叫余弦线?
设任意角α的终边与单位圆相交于点P(x,y),过点P作x轴的垂
正弦函数余弦函数的图像和性质(2)
第二课时 正弦函数、余弦函数的图象与性质(二)
(一)复习与引入 上节课,我们学习了两种作正余弦函数的图象的方法,其中我们经常要用到的是五点法作图。(一图了事)
教师在黑板上用五点法画出函数y=sinx,y=cosx的图象(列表、描点、连线),同时说明五个关键点的坐标。强调作正余弦函数要抓住五个关键点。 (二)新课
一、正余弦函数作图 例1 画出下列函数的简图 (1)y=1+sinx,x∈[0,2π]; 说明:
1、第(1)题由教师演示(列表,描点,作图),第(2)题由学生自行完成,教师校对; 2、作正弦、余弦函数的图象必须抓住五个关键点;
3、第(1)题中的函数与函数y=sinx,x∈[0,2π]的图象之间有何关系?(由函数y=sinx,x∈[0,2π]上的每一点向上平移一个单位长度或图象向上平移一个单位长度)第(2)题中的函数与函数y=cosx,x∈[0,2π]的图象之间有何关系?(关于x轴对称)
4、口答:请根据函数y=sinx,y=cosx的图象,画出函数y=sinx-1,y=1-cosx的图象。 5、推广并归纳:y=sinx+m,y=cosx+n可由y=sinx,y=cosx经过怎样的变换而得到?(在y轴上平行移动)若在自变量
5.2正弦函数余弦函数的图像和性质
高中数学精品题库=复习题+练习题如果要有更加详细的资料。请按照文档的联系方式联系!
正弦函数余弦函数的图象和性质
潘老师课件
高中数学精品题库=复习题+练习题如果要有更加详细的资料。请按照文档的联系方式联系!
正弦函数余弦函数的图象和性质(一 正弦函数余弦函数的图象和性质 一)
复习回顾 思考导学 学习新课 课时小结0
y
x
高中数学精品题库=复习题+练习题如果要有更加详细的资料。请按照文档的联系方式联系!
1.
sin a, cosa, tan a 的几何意义是什么?yT
1
PA
正弦线MP
o
M
1
x
余弦线OM
正切线AT
高中数学精品题库=复习题+练习题如果要有更加详细的资料。请按照文档的联系方式联系!
y = x2 2x的图象 2.如何用描点法作出函数 如何用描点法作出函数 图象? 如何用(1)列表 列表
1 0 1 2 y = x 2 2x 3 0 1 0
x
3 31 2 1 0
y
(2) 描点
.
1
(3)连线 连线
.
2
.
x返回
高中数学精品题库=复习题+练习题如果要有更加详细的资料。请按照文档的联系方式联系!
1.能否用描点法作函数 y =sin x, x∈[0 2 ]的图象 能否用描点法作函数 能否用 , π 图象?只要能够确定该图象上的点 (x,sin
5.2正弦函数余弦函数的图像和性质
高中数学精品题库=复习题+练习题如果要有更加详细的资料。请按照文档的联系方式联系!
正弦函数余弦函数的图象和性质
潘老师课件
高中数学精品题库=复习题+练习题如果要有更加详细的资料。请按照文档的联系方式联系!
正弦函数余弦函数的图象和性质(一 正弦函数余弦函数的图象和性质 一)
复习回顾 思考导学 学习新课 课时小结0
y
x
高中数学精品题库=复习题+练习题如果要有更加详细的资料。请按照文档的联系方式联系!
1.
sin a, cosa, tan a 的几何意义是什么?yT
1
PA
正弦线MP
o
M
1
x
余弦线OM
正切线AT
高中数学精品题库=复习题+练习题如果要有更加详细的资料。请按照文档的联系方式联系!
y = x2 2x的图象 2.如何用描点法作出函数 如何用描点法作出函数 图象? 如何用(1)列表 列表
1 0 1 2 y = x 2 2x 3 0 1 0
x
3 31 2 1 0
y
(2) 描点
.
1
(3)连线 连线
.
2
.
x返回
高中数学精品题库=复习题+练习题如果要有更加详细的资料。请按照文档的联系方式联系!
1.能否用描点法作函数 y =sin x, x∈[0 2 ]的图象 能否用描点法作函数 能否用 , π 图象?只要能够确定该图象上的点 (x,sin
正弦、余弦、正切函数的图像与性质
正弦、余弦、正切函数的图像与性质
一、选择题:
1.函数y=sinx
2+cosx
是( )
A.奇函数B.偶函数C.既是奇函数又是偶函数D.既不是奇函数也不是偶函数 2.下列关系式中正确的是( )
A.sin11°<cos10°<sin168° B.sin168°<sin11°<cos10° C.sin11°<sin168°<cos10° D.sin168°<cos10°<sin11° 3.已知函数f(x)=sin??x-π
2??(x∈R),下面结论错误的是( ) A.函数f(x)的最小正周期为2πB.函数f(x)在区间??0,π
2??上是增函数 C.函数f(x)的图像关于直线x=0对称D.函数f(x)的奇函数
4.设a=log?1sin81?,b=log1sin25,c=log1cos25°,则它们的大小关系为( )
222A.a<c<bB.b<c<aC.a<b<cD.b<a<c 5.函数y=lncosx??-π2
<x<π
2??的图像是( )
A. BC. D.
6.当-π2<x<π
2
时,函数y=tan|x|的图像( )
A.关于原点对称 B.关于x轴对称C.关于y轴对称D.不是对称图形 7.函数y=
1.4.2 正弦函数、余弦函数的性质(二)
高一数学人教A版必修四课件
1.4.2 正弦函数、余弦函数的性质(二)
高一数学人教A版必修四课件
1.请回答:什么叫做周期函数? 对于函数f(x),如果存在一个非零常数T,使得当x 取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个 函数的周期.
2.正弦函数、余弦函数是否是周期函数?周期是 多少?最小正周期是多少? 2k (k Z且k 0) 正弦函数、 余弦函数都是周期函数,都是它们的周期,最小正周期均是 2 .
高一数学人教A版必修四课件
3.函数的周期性对于研究函数有什么意义?对于周期函数,如果我们能把握它在一个周期
内的情况,那么整个周期内的情况也就把握了 .这是研究周期函数的一个重要方法,即由一个周期
的情况,扩展到整个函数的情况.
高一数学人教A版必修四课件
1.掌握正弦函数、余弦函数的奇偶性、单调性. (重点) 2.会利用三角函数的单调性判断一组数的大小, 会求给出的三角函数的单调区间.(重点、难点)
高一数学人教A版必修四课件
一、奇偶性探究1.观察正弦曲线和余弦曲线的对称性,你有什么发现?y1 -3 5 2
正弦曲线关于原点O对称 x 2
-2
3 2
-
2
O-1
3 2
2
5
高一三角函数《4.8正弦函数、余弦函数的图像和性质》教案
4.8正弦函数、余弦函数的图像和性质
教学目标
1.会用单位圆中的三角函数线画出正弦函数的图像,并在此基础上由诱导公式画出余弦函数的图像; 2.了解周期函数与最小正周期的意义,会求y=Asin(ωx+ψ)的周期,了解奇偶函数的意义,能判断函数的奇偶性;
3.通过正弦、余弦函数图像理解正弦函数、余弦函数的性质,培养学生的数形结合的能力; 4.简化正弦、余弦函数的绘制过程,会用“五点法”画出正弦函数、余弦函数和函数y=Asin(ωx+ψ)的简图;
5.通过本节的学习培养学生的化归能力、转化思想.
教学建议
知识结构:
重点与难点分析:
本节重点是正弦函数、余弦函数的图像形状及其主要性质(定义域、值域、最值、周期性、奇偶性、单调性).正弦、余弦函数在实际生活中应用十分广泛,函数的图像和性质是应用的重要基础,也是解决三角函数的综合问题的基础,它能较好的综合三角变换的所有内容,可进一步深入研究其它函数的相关性质.函数图像可以直观的反映函数的性质,因此首先要掌握好函数图像形状特点,使学生将数、形结合对照掌握这两个函数.
本节难点是利用正弦线画出函数 的图像,利用正弦曲线和诱导公式画出余弦曲线,周期函数与最小正周期意义的理解.利