4.2平行四边形及其性质第二课时教案
“4.2平行四边形及其性质第二课时教案”相关的资料有哪些?“4.2平行四边形及其性质第二课时教案”相关的范文有哪些?怎么写?下面是小编为您精心整理的“4.2平行四边形及其性质第二课时教案”相关范文大全或资料大全,欢迎大家分享。
特殊平行四边形教案第二课时
第三章 证明(三)
2.特殊平行四边形(二)
一、学生知识状况分析
在八年级教材中,学生已经对菱形、正方形的性质及其判别方法,通过一些直观的方法进行了大量的探索,所以学生对所要学习的结论已经有所了解。其次经历了《证明(一)》、《证明(二)》的学习,通过推理训练,学生们已经具备了一定的推理能力,树立了初步的推理意识,为严格的推理证明打下了基础。再次在以前的数学学习中,学生已经经历了很多合作学习的过程,具有了一定合作学习的经验,具备了一定的合作与交流的能力。
二、教学任务分析
因为这节课所涉及的很多命题,学生已有所了解,对于这些命题,教科书利用提问的方式让学生联想回忆,然后利用已有的定理证明它们,让学生从中体会证明的必要性,理解证明的基本过程,掌握用综合法证明的格式,初步感受公理化思想。因此,本节课注重新旧知识的结合及学生推理能力的提高,而不要追求证明题的数量和证明的技巧。对证明方法和证明过程的体验,成为本节课的重点。
此外,这部分题目多数有多种思路,注意引导学生选用不同的知识点、从不同的角度思考问题;注意让学生对解题思路和办法进行辨析,从而能对众多解法作优化选择;注意渗透归纳、类比、转化等数学思想方法,而不是给学生一个固有的模式往题目中套。
三、教学准备
特殊平行四边形教案第二课时
第三章 证明(三)
2.特殊平行四边形(二)
一、学生知识状况分析
在八年级教材中,学生已经对菱形、正方形的性质及其判别方法,通过一些直观的方法进行了大量的探索,所以学生对所要学习的结论已经有所了解。其次经历了《证明(一)》、《证明(二)》的学习,通过推理训练,学生们已经具备了一定的推理能力,树立了初步的推理意识,为严格的推理证明打下了基础。再次在以前的数学学习中,学生已经经历了很多合作学习的过程,具有了一定合作学习的经验,具备了一定的合作与交流的能力。
二、教学任务分析
因为这节课所涉及的很多命题,学生已有所了解,对于这些命题,教科书利用提问的方式让学生联想回忆,然后利用已有的定理证明它们,让学生从中体会证明的必要性,理解证明的基本过程,掌握用综合法证明的格式,初步感受公理化思想。因此,本节课注重新旧知识的结合及学生推理能力的提高,而不要追求证明题的数量和证明的技巧。对证明方法和证明过程的体验,成为本节课的重点。
此外,这部分题目多数有多种思路,注意引导学生选用不同的知识点、从不同的角度思考问题;注意让学生对解题思路和办法进行辨析,从而能对众多解法作优化选择;注意渗透归纳、类比、转化等数学思想方法,而不是给学生一个固有的模式往题目中套。
三、教学准备
推荐--数学优质教案-平行四边形及其性质 第二课时.doc
数学教案-平行四边形及其性质第二课时
七、教学步骤【复习提问】图1 1.什么叫平行四边形?我们已经学习了它的哪些性质? 2.已知:如图1,,.求证:. 3.什么叫做两条平行线间的距离?它有什么性质?【引入新课】在证明“平行四边形对角相等”这一性质时,是通过连结一条对角线,把它分成两个全等三角形来证明的.如果把平行四边形的两条对角两条对角线都连结起来,那么这两条对角线之间又有什么关系呢?下面来研究这个问题.【讲解新课】图2 (1)平行四边形的性质定理3,平行四边形的对角线互相平分.先让学生观察图形,如图2.获得对角线互相平分的感性认识,然后引导学生写出已知,求证、证明.(2)平行四边形性质,定理的综合应用:同学们已经掌握了平行四边形的边、角、对角线的性质,这是解决平行四边形有关问题的基础,灵活应用则是关键.图3 例2 已知:如图3 的对角线、相交于点,过点与、分别相交于点、.求证:.证明比较容易,只须证出△ ≌△,或△ ≌△,这是学生自己可以完成的,但需注意及时应用新知识,防止思维定势.如这里可直接由定理3得出,而不再重复定理的推导过程证出.图4 例3 已知,如图4,,,.求的面积.(1)首先引导学生按所给条件画出这个平行四边形,让学生回顾小
4.2平行四边形及其性质2
4.2平行四边形及其性质2
一位饱经苍桑的老人,经过一辈子的辛勤劳动,到晚年的时候,终 于拥了一块平行四边形的土地,由于年迈体弱,他决定把这块土地 平均分给他的四个孩子,他的三个儿子想出了三种方案,都认为自 己是对的,你说他们分得对吗? 老大 老四 老大 老二 老四 老二 老三 老大 老二 老三 老二 老四
老大
老三 老三
平行四边形的面积 已知 ABCD中,AE⊥BC于点E, AF⊥CD 于点F.若 AE=5,AF=10, ABCD的周长为48,求 ABCD的面积; A D F C
B
E
S = 底 ×高
合作学习
1)利用作业本上的横条,请任意画两条互 相平行的直线a、b,并在直线a上,任意画两条 夹在直线a,b之间的平行线段,并加以比较,你 能得到什么结果?
A
B
aD
A
B
ab
C
b
C AC=DB
D
你能给出证明吗?
A
B
证明:
aD
∵ AB∥CD, BC∥AD∴四边形ABCD是平行四边形(平行四边形的定义) ∴
C
A
B
AC = BD (平行四边形的性质) 平行线的性质定理:
b
、夹在两条平行线间的平行线段相 a 1等 .2、夹在两条平行线间的垂线段相等.
C
D
b
合作学习 2)、如图,把一把三角尺的一条直角边沿着直线b移动。
观察三角尺的另一边与直线a交点处的
18.1.2平行四边形性质教案
教学内容 18.1.1平行四边形的性质 课标对本节掌握平行四边形对角线互相平分的性质. 课的教学要求 教学目标 能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题. 培养学生的推理论证能力和逻辑思维能力. 知识目标:掌握平行四边形对角线互相平分的性质. 能力目标:能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题. 情感目标:培养学生的推理论证能力和逻辑思维能力. 教学重点 教学重点:平行四边形对角线互相平分的性质,以及性质的应用. 难点 教学准备 教学时间 教学难点:综合运用平行四边形的性质进行有关的论证和计算. 教科书、教具 第二课时 教学过程 第( 2 )课时 教学环节 教师活动预设 学生活动预设 设计意图 备注 复习平行四边形的定义? 旧知 复习提问: 这样设计 的目的是为证明平行四边形的另一性情境(1)什么样的四边形是平行四边形?四边形与平行四边形的关系是: 导入
质打基础 (2)平行四边形的性质: ①具有一般四边形的性质(内角和是360?). ②角:平行四边形的对角相等,邻角互补. 边:平行四边形的对边相等. 探索研究,证实发现 学习小组内互相交流,讨论,
1.1平行四边形及其性质(2)
九年级数学(上)课前预习案(第1章)
1.1平行四边形及其性质(2)
一、学习目标 1.掌握平行四边形对角线互相平分的性质。
2.能运用平行四边形的性质解决平行四边形的有关计算和证明题。
二、学习过程
【课前预习】
学习任务一:阅读教材第6—7页内容,思考并总结本节课学习的主要内容,写在下面的横线上:(要写的详细些)
学习任务二:学习课本第6页,探究平行四边形的性质定理3。
如图,EFGH中,连接对角线EG、HF,设它们分别交于点O.分别度量OH、OF的长度,你发现它们存在的数量关系是_________________.
猜想线段OG、OE之间的数量关系是_______________________. 证明你的猜想:
由此我们可以得到平行四边形的性质定理3_____________________________. 学习任务三
19.1 平行四边形 (第3课时)19.1.2平行四边形的判定(1)
人教版八年级(下册)
第十九章四边形19.1平行四边形(第3课时)
1、什么是平行四边形? 两组对边分别平行的四边形叫做平行四边形.2、我们学习了平行四边形的哪些性质? 平行四边形的两组对边分别相等; 平行四边形的两组对角分别相等; 平行四边形的对角线互相平分。 AO
D
B
C
平行四边形的两组对边分别相等; 平行四边形的两组对角分别相等;平行四边形的对角线互相平分。
思考:我们已经学习了平行四边形的这些性质, 那么它们的逆命题各是什么呢?两组对边分别相等的四边形是平行四边形;
两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。
我们得到的这些逆命题都成立吗?我们一起 探讨一下吧:
如图1,将两长两短的四根细木条用小钉绞合在 一起,做成一个四边形,使等长的木条成为对边, 转动这个四边形,使它的形状改变,在图形的变化 的过程中,它一直是一个平行四边形吗?A B D A O B D
C
C
图1 图2 如图2,将两根细木条AC、BD的中点重叠,用 小钉绞合在一起,用橡皮筋连接木条的顶点,做成 一个四边形ABCD.转动两根木条,四边形ABCD一直 是一个平行四边形吗?
两组对边分别相等的四边形是平行四边形. 平行四边形这个判定方法,我们如何证明?
已知
19.1 平行四边形 (第3课时)19.1.2平行四边形的判定(1)
人教版八年级(下册)
第十九章四边形19.1平行四边形(第3课时)
1、什么是平行四边形? 两组对边分别平行的四边形叫做平行四边形.2、我们学习了平行四边形的哪些性质? 平行四边形的两组对边分别相等; 平行四边形的两组对角分别相等; 平行四边形的对角线互相平分。 AO
D
B
C
平行四边形的两组对边分别相等; 平行四边形的两组对角分别相等;平行四边形的对角线互相平分。
思考:我们已经学习了平行四边形的这些性质, 那么它们的逆命题各是什么呢?两组对边分别相等的四边形是平行四边形;
两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。
我们得到的这些逆命题都成立吗?我们一起 探讨一下吧:
如图1,将两长两短的四根细木条用小钉绞合在 一起,做成一个四边形,使等长的木条成为对边, 转动这个四边形,使它的形状改变,在图形的变化 的过程中,它一直是一个平行四边形吗?A B D A O B D
C
C
图1 图2 如图2,将两根细木条AC、BD的中点重叠,用 小钉绞合在一起,用橡皮筋连接木条的顶点,做成 一个四边形ABCD.转动两根木条,四边形ABCD一直 是一个平行四边形吗?
两组对边分别相等的四边形是平行四边形. 平行四边形这个判定方法,我们如何证明?
已知
6.1.2平行四边形的性质(二)
平行四边形的性质6.1.2平行四边形的性质2
八年级 数学
复习BA D
C
定
义
两组对边分别平行的四边形叫做 平 行 四 边形。其不相邻的两个顶点连成的线段叫 它的对角线。 平行四边形ABCD, 记为“□ABCD”, 读作 “平行四边形ABCD”, 其中线段AC, BD称 为对角线。 1.平行四边形的两组对边分别平行; 2.平行四边形的对边相等, 3.平行四边形的对角相等, 相邻两角互补。
表示方法 倍 速 课 时 学 练
性
质
如图, ABCD的对角线AC、BD 相交于点O.
A
D
●
O C
猜一猜:倍 速 课 时 学 练
B
线段OA与OC、OB与OD长度有何关系?
量一量:拿出手中的平行四边形纸片,测量出四条线段 的长度,验证你的猜想是否正确.
如图,把两张完全相同的平行四边形纸片 叠合在一起,在它们的中心O 钉一个图钉,将 一个平行四边形绕O旋转180°,你发现了什 么? A B
O倍 速 课 时 学 练
D
C
A O ●倍 速 课 时 学 练
D
B再看一遍
C
A O ●倍 速 课 时 学 练
D
B
C
平行四边形的对角线互相平分. 已知:如图: ABCD的对角线AC、BD A 相交于点O. 1 3 O 求证:OA=OC,OB=OD.
D
证明:倍 速 课 时 学 练
4.1平行四边形性质1学案
4.1 平行四边形的性质(1)[学案]
一. 学习目标:
1.理解并掌握平行四边形的概念和平行四边形的性质.
2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.
二 .学习重点:平行四边形的定义,平行四边形的性质及其应用.
学习难点:运用平行四边形的性质进行有关的论证和计算.
三. 学习过程
1.【欣赏图片】
总结平行四边形的定义
(1)定义:________________________四边形
叫平行四边形.
(2)表示:平行四边形用符号“”来表示.
如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD 是平行四边形.平行四边形ABCD记作“______________ ”,
读作“___________________ ”.
(3)几何语言:①∵_____________________,
∴四边形ABCD是平行四边形();
②∵四边形ABCD是平行四边形∴_______________________().
2.【探究】平行四边形的性质.
①观察这个平行四边形的边和角之间有什么关系?度量一下,是不是和你猜想的一致?
AB=_____ ; BC=_____ ; CD=_____; AD=_____.
∠A=______