二元二次分式方程组的解法

“二元二次分式方程组的解法”相关的资料有哪些?“二元二次分式方程组的解法”相关的范文有哪些?怎么写?下面是小编为您精心整理的“二元二次分式方程组的解法”相关范文大全或资料大全,欢迎大家分享。

21.6(2)二元二次方程组的解法

标签:文库时间:2025-01-21
【bwwdw.com - 博文网】

21.6(2)二元二次方程组的解法

教学目标

1、掌握用“因式分解法”解由两个二元二次方程组成的方程组;

2、在学习过程中体会解此类特殊二元二次方程组的基本思路是“降次”;

3、通过对二元二次方程组解法的剖析,领悟事物间可以相互转化的数学思想; 教学重点及难点

会用“因式分解法”解由两个二元二次方程组成的方程组;

正确分析方程组的特点,从而找到合理的解法.

教学媒体:多媒体

教学过程设计

一、 复习引入

我们已经会用代入消元法解由一个二元一次方程和一个二元二次方程组成的二元二次方程组

x 3y 4练习:解方程组: 2 2x 2y 1

这节课我们将学习由两个二元二次方程组成的二元二次方程组的解法.

二、学习新课

22 x 3xy 2y=0 (1)1、观察:方程组 2 2 x y 5 (2)

(1)能直接使用“代入消元法”解答吗?

(2)方程组中的两个方程有什么特点?

学生思考作答,教师进行指导和补充.

【说明】前一节课有对特殊方程进行因式分解的例子,所以在直接用“代入法”解决未果的情况下,学生会想到将方程(1)进行因式分解,但后面的操作就需要教师的指导和教授了.

解:将(1)左边分解因式,可变形为 x y x 2

7.2.1二元一次方程组的解法

标签:文库时间:2025-01-21
【bwwdw.com - 博文网】

7.2.1二元一次方程组的解法————代入消元法

复习引入:1(1)已知a=1,b=3,则a+2b=_______ (2)已知2x+y=5,x=-2,则y=_______ 2(1)在二元一次方程x+3y=1的解中,当x=2时, 对应的y值是_________ (2)在方程2x+y=4中,用含x的式子表示y,则 y=______ ,用含y的式子表示x,则x=________

新知探究:尝试解方程组 y=2x-3 4x-3y=1

解方程组的基 本思想是什么? 通过怎样达到 的?

归纳用代入消元法解方程的步骤:

(1)在方程组中选一个系数比较简单的方程,将 其中一个未知数用含另一个未知数的代数式表示 出来; (2)将变形后的代数式代入另一个方程,消去一 个未知数,得到一个一元一次方程; (3)解这个一元一次方程,求得一个 未知数的 值 (4)将求得的未知数的值代入前面得得到的关系 中,即可求解出另一个未知数的值,并把求得 的两个数的值用符号{连接起来

例1.解方程组 3x-2y=4 (1) (2) x+3y=5

2x+5y=12 x+2y=6

x-y=1 (3) 2x+y=5

(4)

x+y=17 3x+y=17

(5)

x=3y+2 x+3y=8 (6)

4x-3y=17

二元一次方程组的解法 说课稿

标签:文库时间:2025-01-21
【bwwdw.com - 博文网】

二元一次方程组的解法 说课稿

尊敬的各位专家、各位评委:

上午好!我说课的题目是义务教育课程标准实验教科书《数学》七年级下册第八章第二节《消元---二元一次方程组的解法》的第一课时。我将从教材分析、教法选择和学法指导、教学程序设计和评价分析四个方面进行说课。其中教学程序设计将是我阐述的重点,将从六个方面说明。首先我来分析教材:

一、教材分析

(一)教材分析与处理

《消元---二元一次方程组的解法》是义务教育课程标准实验教科书《数学》七年级下册第八章

第二节的内容,这所以要把安排在此处,是基于以下两个方面的考虑:其一,学生已经学习了一元一次方程的解法,此时已经具备了接受二元一次方程组的解法的知识基础;其二,二元一次方程组的解法为今后解决实际生产和生活问题奠定坚实的基础。消元思想体现了数学学习中“化未知为已知”的化归思想方法,这种数学思想会一直影响着学生今后数学的学习。因此,本节内容起着承前启后的作用。

(二)教学重难点及确定依据

本节分两个课时,今天我们来研讨第一个课时,用代入法解二元一次方程组。首先我们来确定第一课时的教学重点和难点。

重点:用代入法解二元一次方程组的基本步骤。

难点:对代入消元法解方程组过程的理解。为什么要消元?怎样才能消元?,把“未知”转化

二元一次方程组的解法教案

标签:文库时间:2025-01-21
【bwwdw.com - 博文网】

二元一次方程组的解法(1) 宁陵县张弓镇初级中学 徐文静

教学目标:

一 .教学知识点

1 会用代入消元法解二元一次方程组

2 了解代入消元法解二元一次方程组的基本步骤 二 .能力训练要求

1 理解消元的思想,知道消元是一种重要的思想方法 2 会用代入消元法解二元一次方程组

3 能说出代入消元法解二元一次方程组的基本步骤 三 .情感与价值观要求

通过用代入消元法解二元一次方程组的过程,让学生体会转化的思想方

法,并增强他们的数学应用意识和能力。

教学重点:

会用代入消元法解二元一次方程组

教学难点:

理解代入消元法,灵活消元,解二元一次方程组。

教学方法:

讲练结合法

教具准备:幻灯片9张 教学过程:

(一)巧设现实情景,引入新课

上一节课,我们学习了二元一次方程,二元一次方程组的有关概念,这一节 我们来学习二元一次方程组的解法。

例1:篮球联赛中,每场比赛都要分出胜负每队胜一场得2分,负一场得1分,队为了争取较好名次,想在全部22场比赛中得到40分,那么这个队胜负场数应分别是多少?

(1)若设这个队胜场数是 场,负场数是 场,可列方程组

(2)若只设一个未知数,设这个队胜

二元一次方程组的解法和应用

标签:文库时间:2025-01-21
【bwwdw.com - 博文网】

二元一次方程组的解法和应用

1.下列各方程中师二元一次方程的是( ) A.

1y3x?5yx2 ??y?5x B.3x+2y=2x+2y C.x?y2?1 D.?5463y2.已知3xm?n?1?4y2m?n?4?1是二元一次方程,则m= ,n= . 3.解下列二元一次方程组

xy??62x?3y?6 34

3x?2?43x?4y?4

2x?3y?k4.关于x,y的方程组 的解满足x+y=12.求实数k的值。

3x?5y?k?25.已知3xm?n?1?4y2m?n?4?0是关于x,y的二元一次方程。则m= ,n= .

6.若2x+98y=98x+2y=100,那么x+y= 。 7.已知方程mx+ny=10有两个解是 x??1y?1

,x?2y??1

。则m= 。

8.关于x,y的二元一次方程组

9.已知方程组

10.已知方程组

?2x?3y?4ax?by?2 与 的解相同。求实数a,b的值。

4x?5y??6ax?by?4ax?by?

7.2.4二元一次方程组的解法(4)

标签:文库时间:2025-01-21
【bwwdw.com - 博文网】

二元次方程一组解的法4()

解方组程 :

解 ①7-2xy3 =9x+2= -y91② ① +② 得 (,7x-y2+)9x+(y2)3+=-1()91x = -166解

得x =-.

1把=x- 1入代,得②9 ×-(1 +)2y -19= y 2= 10-解 得y= -. 5以所方原程的解组

x=为-1,y-5=

5

x2+y 1=,① 去消 yx+3y =2 3 . ②解 ① -②得 ,(x+5y2)-3x+2y) = (-1,3 2 x =2-, 得解 x= -.1 x= 将1-代入,②得 3(-×) +21y= 3 , 2y =3+3 解得 = 3y. 所原以方组的程解为 x -1=, y=3解方组程:( 2)

.若关于1x、的二元y次一方程组

x+=5y k的解也二是一元次方 x-=9ky2x+3程=y6解,的k的求值

解。:

xy=5k+① xy=9-k ②

+②①得,2x =41k解 x=得7 kx把=k代7①,入 y=得-2k 所以方程原的解组 为=x7ky-=k2 x=k 7把 代入2+x3y6,= 得=-yk

22

若关.x、y的二元一于次方组程4x+y=3 2m-2xy9m=的解也二元是一方次

2x -程y3=

二元一次方程的概念及二元一次方程组的解法复习.docx

标签:文库时间:2025-01-21
【bwwdw.com - 博文网】

教学内容

教学目标

重 点

课题:二元一次方程(组)的概念及二元一次方程组的解法复习

1. 知道二元一次方程(组)有关概念 .

2. 掌握解二元一次方程的方法,会解二元一次方程组 .

3. 通过基本训练 , 巩固第八章现学的基本内容 .

4. 通过典型例题和综合运用 , 加深理解第八章现学的基本内容 , 发展能力 . 1. 掌握解二元一次方程的方法,会解二元一次方程组 . 2. 通过基本训练 , 巩固第八章现学的基本内容 .

典型例题和综合运用 .

一、基本训练,掌握双基

1. 填空:

(1) 含有 _____个未知数,并且含有未知数的项的次数都是

_____,像这样的方程叫做二元一次方程.

(2) 把具有相同未知数的两个二元一次方程合在一起,就组成了一个

_________.

(3) 既满足第一个二元一次方程 , 又满足第二个二元一次方程的两个未知数的值

, 叫做 ___________________. (4) 二元一次方程组中有两个未知数, 如果消去其中一个未知数 , 那么就把二元一次方程组转化为我们熟悉的 _______________方程,我们可以先求出一个未知数 , 然后再求另一个未知数

. 这种将未知数的个数由多化少、逐

二元一次方程组解法(二) - 加减法(基础)

标签:文库时间:2025-01-21
【bwwdw.com - 博文网】

金 榜 题 名 找 勤 径 教 育

;;.ll; 勤径教育一对一个性化教案

学生人数 教 师 课 题 教学内容 教学宗旨 赵卉 刘霞 年 级 初一 课 时 授课时段 2 8:00——10:10 授课日期 2014.52.5 二元一次方程组解法(二)---加减法 1. 掌握加减消元法解二元一次方程组的方法; 2. 能熟练、正确、灵活掌握代入法和加减法解二元一次方程组; 3.会对一些特殊的方程组进行特殊的求解 独物之教风,以尽匹夫之责。 新课程讲义 二元一次方程组解法(二)---加减法(基础)知识讲解 【要点梳理】 要点一、加减消元法解二元一次方程组 两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法. 要点诠释:用加减消元法解二元一次方程组的一般步骤: (1)方程组的两个方程中,如果同一个未知数的系数既不互为相反数,又不相等

8.2.消元——二元一次方程组的解法 2

标签:文库时间:2025-01-21
【bwwdw.com - 博文网】

课 后 小 结 课 堂 练 习 新 课 讲 解 复 习 引 入

消 元 ( ( 2 )

我们知道,可以用代入法解方程组 我们知道 可以用代入法解方程组x+y=22 2x+y=40

解的试试看! 解的试试看 回顾一下 我们解二元一次方程的基本思想是什么? 我们解二元一次方程的基本思想是什么?你够细心吗? 你够细心吗

这个方程组的两个方程中,y的系数有什么关系 利用 这个方程组的两个方程中 的系数有什么关系?利用 的系数有什么关系 这种关系你能发现新的消元方法吗? 这种关系你能发现新的消元方法吗

x+y=22 ① 2x+y=40 ② 这两个方程中未知数y的系数相同 的系数相同, 这两个方程中未知数 的系数相同 ②-①可消去未知数 ① y,得 得 x=18 代入① 把x=18代入①,得 代入 得 y=4.像这样,通过对方程组中的两个方程进行加或减的运算就 像这样 通过对方程组中的两个方程进行加或减的运算就 可以消去一个未知数,得到一个一元一次方程 得到一个一元一次方程,这种方法叫做 可以消去一个未知数 得到一个一元一次方程 这种方法叫做 加减消元法,简称加减法. 简称加减法 加减消元法 简称加减法

①-②也能消去 ② 未知数y,求得 未知数 求

8.2.消元——二元一次方程组的解法 2

标签:文库时间:2025-01-21
【bwwdw.com - 博文网】

课 后 小 结 课 堂 练 习 新 课 讲 解 复 习 引 入

消 元 ( ( 2 )

我们知道,可以用代入法解方程组 我们知道 可以用代入法解方程组x+y=22 2x+y=40

解的试试看! 解的试试看 回顾一下 我们解二元一次方程的基本思想是什么? 我们解二元一次方程的基本思想是什么?你够细心吗? 你够细心吗

这个方程组的两个方程中,y的系数有什么关系 利用 这个方程组的两个方程中 的系数有什么关系?利用 的系数有什么关系 这种关系你能发现新的消元方法吗? 这种关系你能发现新的消元方法吗

x+y=22 ① 2x+y=40 ② 这两个方程中未知数y的系数相同 的系数相同, 这两个方程中未知数 的系数相同 ②-①可消去未知数 ① y,得 得 x=18 代入① 把x=18代入①,得 代入 得 y=4.像这样,通过对方程组中的两个方程进行加或减的运算就 像这样 通过对方程组中的两个方程进行加或减的运算就 可以消去一个未知数,得到一个一元一次方程 得到一个一元一次方程,这种方法叫做 可以消去一个未知数 得到一个一元一次方程 这种方法叫做 加减消元法,简称加减法. 简称加减法 加减消元法 简称加减法

①-②也能消去 ② 未知数y,求得 未知数 求