解析几何题型方法归纳
“解析几何题型方法归纳”相关的资料有哪些?“解析几何题型方法归纳”相关的范文有哪些?怎么写?下面是小编为您精心整理的“解析几何题型方法归纳”相关范文大全或资料大全,欢迎大家分享。
解析几何题型与方法
解析几何题型与方法
高考解析几何涉及直线、圆、椭圆、双曲线、抛物线的方程、性质及其相互之间的关系,其本质是使用代数的方法解决几何问题,因此数形结合是最常用的思想方法,同时转化思想、函数与方程思想等也比较常用。在解题时,解析几何问题的题目较为明确,每一各设问的顺序也决定了解题的顺序,考生容易找到解题思路,但难点在于,解析题容易找到路标,找到路标之后怎没走和庞大的运算量是困扰考生的关键问题。
解析答题通常是五种线型中两或三种线形组合而成,常见有以下四种题型: 题型一:轨迹与方程(判定线型并求出轨迹方程) 题型二:范围与最值(通常是题目中某个参数的范围)
题型三:定值与定性(证明某个参数的定值或以式子的形式明确的关系) 题型四:存在与探索(讨论存在性) 【考点精析】
考点一 曲线(轨迹)方程的求法 常见的求轨迹方程的方法:
(1)单动点的轨迹问题——直接法(五步曲)+ 待定系数法(定义法); (2)双动点的轨迹问题——代入法;
(3)多动点的轨迹问题——参数法 + 交轨法。
例题1. 已知⊙M:x2?(y?2)2?1,Q是x轴上的动点,QA,QB分别切⊙M于A,B两点,(1)如果|AB|?42,求直线MQ的方程; 3 (2)求动弦AB的中点P的
解析几何
汤建良:《解析几何》课程教学大纲
深圳大学数学与计算科学学院
课程教学大纲
(2006年10月重印版)
课程编号 22143102
课程名称 解析几何
课程类别 专业必修
教材名称 解析几何
制 订 人 汤建良
审 核 人 刘则毅
2005年 4 月修订
- 1 -
汤建良:《解析几何》课程教学大纲
一、课程设计的指导思想
(一)课程性质 1.课程类别:专业必修课 2.适应专业:数学与应用数学专业(应用数学方向) 3.开设学期:第壹学期 4.学时安排:周学时3,总学时42 5.学分分配:3学分 (二)开设目的 解析几何是中学几何的继续与发展,既有深刻的数学理论意义,也有广泛的实际应用价值。在实际工程中的许多重要领域都有它的应用价值。通过本课程的学习,同学们还可以加深对中学三角和几何学的认识与理解,有助于解决一些初等数学问题。解析几何的一些思想方法在数学中具有普遍性。通过本课程的学习,能使学生提高数学素养,并为学习有关后继课程以及进一步扩大数学知识面奠定必要的数学基础。 (三)基本要求 掌握解析几何的基本理论与方法,深刻理解解
简化解析几何运算方法
简化解几运算八法
解析几何的本质特征是几何问题代数化,就是将抽象的几何问题转化为易于计算的代
数问题,这提供了许多便利;但也不可避免地造成许多计算的繁琐,同时对运算能力提出较高要求。其实,只要有简化运算的意识,注意探索简捷运算的技巧,并适时进行有关的规律总结,许多较为繁琐的计算过程是可以简化甚至避免的。
1.回归定义
圆锥曲线的定义是圆锥曲线的本质属性。许多美妙而有趣的性质和结论都是在其定义的基础上展开的,在分析求解时若考虑回归定义,可以使许多问题化繁为简。
例1 过椭圆左焦点倾斜角为60?的直线交椭圆于点A,B且FA?2FB,则此椭圆离心率为_____.
2?x2y?2?1,2解析 本题的常规解法是:联立?再结合条件FA?2FB求解,运算量大,b?a?y?3(x?c)?作为填空题,不划算!如图1,考虑使用椭圆的定义和有关平面几何性质来求解:
FM?BB??13(AA??BB?)?13(AA??2BB?) ?1AF2BF(?), 3eey另一方面,在Rt?BC?F中?BFC??60??BF?2FC?, 故FM?FC??C?M?BFe?BF2.于是
A?MB?CC?FBAxO1AF2BFBFBF, (?)?FM??3eee2又FA
简化解析几何运算方法
简化解几运算八法
解析几何的本质特征是几何问题代数化,就是将抽象的几何问题转化为易于计算的代
数问题,这提供了许多便利;但也不可避免地造成许多计算的繁琐,同时对运算能力提出较高要求。其实,只要有简化运算的意识,注意探索简捷运算的技巧,并适时进行有关的规律总结,许多较为繁琐的计算过程是可以简化甚至避免的。
1.回归定义
圆锥曲线的定义是圆锥曲线的本质属性。许多美妙而有趣的性质和结论都是在其定义的基础上展开的,在分析求解时若考虑回归定义,可以使许多问题化繁为简。
例1 过椭圆左焦点倾斜角为60?的直线交椭圆于点A,B且FA?2FB,则此椭圆离心率为_____.
2?x2y?2?1,2解析 本题的常规解法是:联立?再结合条件FA?2FB求解,运算量大,b?a?y?3(x?c)?作为填空题,不划算!如图1,考虑使用椭圆的定义和有关平面几何性质来求解:
FM?BB??13(AA??BB?)?13(AA??2BB?) ?1AF2BF(?), 3eey另一方面,在Rt?BC?F中?BFC??60??BF?2FC?, 故FM?FC??C?M?BFe?BF2.于是
A?MB?CC?FBAxO1AF2BFBFBF, (?)?FM??3eee2又FA
解析几何
篇一:解析几何知识点总结
抛物线的标准方程、图象及几何性质:p?0
1、定义:
2、几个概念:
① p的几何意义:焦参数p是焦点到准线的距离,故p为正数;1
② ;
4
③ 方程中的一次项的变量与对称轴的名称相同,一次项的系数符号决定抛物线的开口方向。 ④ 通径:2p
3、如:AB是过抛物线y2?2px(p?0)焦点F的弦,M是AB的中点,l是抛物线的准线,MN?l,N为垂足,BD?l,AH?l,D,H为垂足,求证:
(1)HF?DF; (2)AN?BN; (3)FN?AB;
(4)设MN交抛物线于Q,则Q平分MN;
2
(5)设A(x1,y1),B(x2,y2),则y1y2??p,x1x2?
12
p; 4
(6)1?1
|FA|
|FB|
?
2; p
(7)A,O,D三点在一条直线上
2
(8)过M作ME?AB,ME交x轴于E,求证:|EF|?1|AB|,|ME|?|FA|?|FB|;
2
1、 双曲线的定义:平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|e(e注意: |
F1F2|)的点的轨迹。
?1)的点的轨迹。两个定点为双曲线的焦点,焦点间距离叫做焦距;定直线叫做准线。常数叫做离心率。
PF1|?|PF2|?2a与|PF2|?|PF1|?2a(2a?|F1F2
第3讲 解析几何之中点弦题型
第三讲.解析几何之中点弦题型
【教学目标】
1.掌握两点的中点坐标公式;
2.掌握韦达定理在解析几何中的应用; 3.会求解解析几何中相关的中点弦问题。
【知识、方法梳理】
1.若A(x1,y1),B(x2,y2),则AB的中点坐标是(x1?x2y1?y2,) 22b?x?x????12a 22.一元二次方程ax?bx?c?0,则有??xx?c12?a?3.解析几何中遇到中点弦问题,基本解题思路是联立方程,利用韦达定理(注意判别式?)
【典例精讲】
x2y2??1交于A,B两点,求A,B的中点坐标。 例1.直线l:y?x?1与椭圆42【解析】:将直线代入椭圆,得3x?4x?2?0
设A(x1,y1),B(x2,y2),中点(x0,y0)
2x?x2421??,y0?x0?1? ,x0?1323321所以中点(?,)
33则x1?x2??
【点评】:看到中点,想到韦达定理
1 www.1smart.org 中国领先的高端教育连锁集团
x21?y2?1于A,B两点,且A,B的中点为M(1,),求直线
浅谈解析几何的学习方法
.
.专业WORD 浅谈解析几何的学习方法
高中数学中的解析几何容学生之所以会觉得难是因为对几个常用公式、定理的含义并没有真正弄清楚,实际上如果能花时间把每个公式的推导过程研究一遍消化掉,那么学好它将不是什么疑难问题了。
我们知道,“数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休.”——我国著名数学家华罗庚。
作为学习解析几何的开始,我们引入了我国著名的数学家华罗庚的一句话,他告诉了我们“数”和“形”各自的特点和不足,从而强调了数形结合的重要性,尤其是在解析几何的学习过程中,我们始终都要注意运用数形结合的思想和方法。
当然,学习这一部分容,只是了解这种思想也是不够的为此,就为大家介绍一下学习解析几何的方法和需要注意的几点。
一、夯实基础
1、正确理解定义
有些同学可能现在就会去翻书,去查定义,会说,回答这些问题还不容易嘛,我背一下不就可以了吗。可是,我要告诉大家——定义不是用来背的。
.
可能大家还没有理解这句话的意思,定义不是要你去死记硬背,而是要你去自己理解,去自己总结。
教材上引入椭圆定义的时候花费了很大的篇幅,可它的本质是什么?与双曲线的定义又有怎样的相同点、不同点?椭圆、双曲线和抛物线这三个重要的圆锥曲线的统一定义我们又该如何去理解?这些
高中数学解析几何题型与专题训练
高中数学解析几何题型
本文档主要包含高中数学解析几何常见的10类题型与基本方法和专题训练与高考预测: 考点1.求参数的值 考点2. 求线段的长 考点3. 曲线的离心率 考点4. 求最大(小)值
考点5 圆锥曲线的基本概念和性质
考点6 利用向量求曲线方程和解决相关问题 考点7 利用向量处理圆锥曲线中的最值问题 考点8 利用向量处理圆锥曲线中的取值范围问题 考点9 利用向量处理圆锥曲线中的存在性问题 考点10 利用向量处理直线与圆锥曲线的关系问题 专题训练与高考预测
考点1.求参数的值
求参数的值是高考题中的常见题型之一,其解法为从曲线的性质入手,构造方程解之. 例1.若抛物线y2?2px的焦点与椭圆
x26?y22?1的右焦点重合,则p的值为( )
A.?2 B.2 C.?4 D.4
考查意图: 本题主要考查抛物线、椭圆的标准方程和抛物线、椭圆的基本几何性质. 解答过程:椭圆故选D.
x26?y22?1的右焦点为(2,0),所以抛物线y?2px2的焦点为(2,0),则p?4,
考点2. 求线段的长
求线段的长也是高考题中的常见题型之一,其解法为从曲线的性质入手,找出点的坐标,利用距离公
大学解析几何
空间解析几何
基本知识 一、向量
1、已知空间中任意两点M1(x1,y1,z1)和M2(x2,y2,z2),则向量
M1M2?(x2?x1,y2?y1,z2?z1)
2、已知向量a?(a1,a2,a3)、b?(b1,b2,b3),则 (1)向量a的模为|a|???????a1?a2?a3
222(2)a?b?(a1?b1,a2?b2,a3?b3) (3)?a?(?a1,?a2,?a3) 3、向量的内积a?b
(1)a?b?|a|?|b|?cos?a,b? (2)a?b?a1b1?a2b2?a3b3
其中?a,b?为向量a,b的夹角,且0??a,b???
注意:利用向量的内积可求直线与直线的夹角、直线与平面的夹角、平面与平面的夹角。 4、向量的外积a?b(遵循右手原则,且a?b?a、a?b?b)
??????????????????????????ia?b?a1??ja2b2??ka3 b3??b1??5、(1)a//b?a??b?????a1a2a3 ??b1b2b3(2)a?b?a?b?0?a1b1?a2b2?a3b3?0 二、平面
100
1、平面的点法式方程
已知平面过点P(x0,y0,z0),且法向量为n?(A,B,C),则平面方程为
解析几何1
《解析几何》教学大纲
一. 总 则
1. 本课程的教学目的和要求:
解析几何和其他自然科学一样,是在生产实践中产生和发展起来的,有着丰富的内容和实际背景,广泛应用于工程技术,物理、化学、生物、经济及其他领域。本课程的教学目的在于培养学生运用解析方法解决几何与实际问题的能力,掌握空间几何课程的基本知识和内容,并为进一步学习后继课程作准备。 2. 本课程的主要内容: 第一章 矢量与坐标 第二章 轨迹与方程 第三章 平面与空间直线
第四章 柱面、椎面、旋转曲面与二次曲面 第五章 二次曲线的一般理论 3. 教学重点与难点:
重点:空间直线、平面、常见二次曲面和平面、一般二次曲线的理论。 难点:已知条件求轨迹。
4. 本课程的知识范围以及与相关课程的关系:
本课程主要以线性代数为工具,研究空间解析几何,即研究空间中的直线、平面、二次曲线及平面上的二次曲线。解析几何与高等代数、数学分析有着密切的关系。在数学分析中,常常用到解析几何的方法图形的许多性质,并且解析几何为代数中不少对象提供了具体的几何解释,给代数以直观的几何形象,加强了数量关系的直观鲜明性,使几何、分析、代数构成了一个不可分