i2c和spi的区别
“i2c和spi的区别”相关的资料有哪些?“i2c和spi的区别”相关的范文有哪些?怎么写?下面是小编为您精心整理的“i2c和spi的区别”相关范文大全或资料大全,欢迎大家分享。
I2C和SPI - 图文
SPI/I2C总线
虽然现实世界中的信号都是模拟信号,但是越来越多的模拟IC产品通过数字接口实现通讯。微处理器通过几条总线控制周边的设备,比如:模/数转换器(ADC),数/模转换器(DAC),智能电池,端口扩展,EEPROM以及温度传感器。
与数据的平行传输接口不同,串行数据通过两条、三条或者四条数据/时钟总线连续地传输比特数据。虽然并行的总线具有传输速度快的特点,但是串行总线具有使用较少的控制和数据线的优点。2线和3线的总线在大多数微处理器上应用于收发数据。
串行接口在提供串行时钟的主设备和从设备/周边设备之间的进行通讯。串行接口有三种:三线、二线和单线。本文着眼于二线和三线的串行接口。
三线的接口包括:片选线(CS或SS)、时钟线(SCLK)和数据输入/主设备输出线(DIN或MOSI)。三线接口有时也包括一条数据输出/主设备输入线(DOUT或MISO)。包含DOUT线的三线接口有时也叫做四线接口。为了叙述的简便,本文将三线接口和四线接口统称为三线接口。二线接口包括一条数据线(SDA或SMBDATA)和一条时钟线(SCL或SMBCLK)。
串行外设接口(SPI),队列串行外设接口(QSPI)和MicroWire(或MicroWire/Plu
SPI、I2C、UART串行总线协议
SPI、I2C、UART串行总线协议
串口通讯通信协议 ........................................................................................................................... 2
串口通信 ................................................................................................................................... 7
RS-232 ...................................................................................................................................... 8
SPI、I2C、UART串行总线协议
串口通讯通信协议
所谓通信协议是指通信双方的一种约定。约定包括对数据格式、同步方式、传送速度、传送步骤、检纠错方式以及控制字符定义等问题做出统一规定,通信双方
SPI、I2C、I2S、UART、CAN、SDIO、GPIO的介绍
SPI、I2C、I2S、UART、CAN、SDIO、GPIO各自的特点
SPI、I2C、I2S、UART、GPIO、SDIO、CAN的介绍,各自的特点是什么?
SPI: SPI(Serial Peripheral Interface)是MOTOROLA公司提出的同步串行总线方式。高速同步串行口。3~4线接口,收发独立、可同步进行.
因其硬件功能强大而被广泛应用。在单片机组成的智能仪器和测控系统中。如果对速度要求不高,采用SPI总线模式是个不错的选择。它可以节省I/O端口,提高外设的数目和系统的性能。标准SPI总线由四根线组成:串行时钟线(SCK)、主机输入/从机输出线(MISO)。主机输出/从机输入线(MOSI)和片选信号(CS)。有的SPI接口芯片带有中断信号线或没有MOSI。
SPI总线由三条信号线组成:串行时钟(SCLK)、串行数据输出(SDO)、串行数据输入(SDI)。SPI总线可以实现多个SPI设备互相连接。提供SPI串行时钟的SPI设备为SPI主机或主设备(Master),其他设备为SPI从机或从设备(Slave)。主从设备间可以实现全双工通信,当有多个从设备时,还可以增加一条从设备选择线。如果用通用IO口模拟SPI总线,必须要有一个输出
I2C
I2C简述
I2C是飞利浦半导体公式开发的一种两线式串行总线,用于连接微控制器和外围总线,其主要特点是引脚少,总线连接简单,结构紧凑,总线上增加器件不影响系统正常工作,系统修改和可扩展性好。 I2C模块的特点: 一. I2C协议技术性能:
工作速率有100K和400K及高速模式3.4Mb/s; 支持多机通讯;
支持多主控模块,但同一时刻只允许有一个主控; 由数据线SDA和时钟SCL构成的串行总线;
每个电路和模块都有唯一的地址; 每个器件可以使用独立电源
二. I2C协议基本工作原理:
以启动信号START来掌管总线,以停止信号STOP来释放总线; 每次通讯以START开始,以STOP结束;
启动信号START后紧接着发送一个地址字节,其中7位为被控器件的地址码,一位为读/写控制位R/W,R. /W位为0表示由主控向被控器件写数据,R/W为1表示由主控向被控器件读数据;
当被控器件检测到收到的地址与自己的地址相同时,在第9个时钟期间反馈应答信号; 每个数据字节在传送时都是高位(MSB)在前;
写通讯过程:
I2C总线原理
I2C总线原理
I2C即Inter IC,由Philips公司开发,是当今电子设计中应用非常广泛的串行总线之一,主要用于电压、温度监控,EEPROM数据的读写,光模块的管理等。
I2C总线只有两根线,SCL和SDA,SCL即Serial Clock,串行参考时钟,
SDA即Serial Data,串行数据。
?I2C总线的速率能达到多少? 标准模式下:100Kbps 快速模式下:400Kbps 高速模式下:3.4Mbps I2C总线结构如下图所示:
如上图所示,I2C是OC或OD输出结构,使用时必须在芯片外部进行上拉,上拉电阻R的取值根据I2C总线上所挂器件数量及I2C总线的速率有关,一般是标准模式下R选择10kohm,快速模式下R选取1kohm,I2C总线上挂的I2C器件越多,就要求I2C的驱动能力越强,R的取值就要越小,实际设计中,一般是先选取4.7kohm上拉电阻,然后在调试的时候根据实测的I2C波形再调整R的值。
?I2C总线上最多能挂多少个I2C器件?
I2C总线上允许挂接I2C器件的数量由两个条件决定:
1).I2C从设
I2C总线接口
I2C总线接口
S3C44B0X I2C总线概述
I2C是一种双向两线制的串行数据传输标准总线。S3C44B0X RISC微处理器支持多主I2C串行接口。专用串行数据线SDA和串行时钟线SCL在总线控制器和外围设备之间传送信息,它们都连在I2C总线上。SDA和SCL线都是双向的。
在多主I2C模式下,多个S3C44B0X RISC微处理器可以从设备接收数据或传送数据到设备。启动数据传送给I2C总线的主设备也负责终止数据的传送。S3C44B0X中的I2C总线使用了标准的优先级仲裁过程。
为了控制多主I2C操作,必须为以下寄存器赋值:多主I2C控制寄存器(IICCON)、多22主IC控制/状态寄存器(IICSTAT)、多主IC Tx/Rx数据移位寄存器(IICDS)和多主I2C地址寄存器(IICADD)。
当I2C空闲时,SDA和SCL线都处于高电平。SDA由高电平到低电平的转变能够产生启动条件;当SCL在高电平保持稳定时,SDA由低电平到高电平的转变能够产生停止条件。
启动和停止条件一般由主设备产生。启动条件产生后,被放到总线上的第一个数据字节的7位地址值能够决定总线主设备所选择的从设备,第8位决定了传送的方向(读或写)。
放到SDA线上的每一
I2C读写流程
I2C读写流程
I2C数据通信是由数据线(SDA)和一根时钟线(SCL)组成 先对I2C初始化:主模式、中断向量IRQ中断、总线速率 数据读写流程:
1、 主设备发出开始信号(Start):
开始信号(Start):时钟线(SCL)为高电平期间,数据线(SDA)由高变低,即为一个开始信号。
2、主设备发出1字节的从设备地址信息,其中最低位为读写控制码(0为写,1为读),高7
位为从机器地址码。
如AT24C256地址: 1 0 1 0 0 A1 A0 R/W
时钟IC:M41T81 1 1 0 1 0 0 0 R/W 3、 从设备发出认可信号:
应答信号(Ack):即认可信号,分为两种情况:(a)、主设备在写从设备时,每正确写完1字节数据,从设备将在下一个时钟周期把数据线(SDA)拉低,即为一个应答信号。(b)、主设备在读从设备时,每正确读完1字节数据,主设备将在下一个时钟周期把数据线(SDA)拉低,即为一个应答信号。注:在读从设备时,主设备在最后一个字节数据接收完毕以后不发出应答信号,而是直接发出结束信号。
4、 主设备开始对从设备进行读写操作。如果是读操作,则每读取1字节,主设备会发送一个应答
信号(Ack)给从设备,如果是写操
I2C程序和流程图
程序和流程图: IIC.h
void Init_IIC(void);
void EEPROM_ByteWrite(unsigned char nAddr,unsigned char nVal); unsigned char EEPROM_RandomRead(unsigned char nAddr); unsigned char EEPROM_CurrentAddressRead(void); void EEPROM_AckPolling(void); void Init_CLK(void); void Init_IIC_Port(void); Main.C
/*******************************************
IIC for AT24c16 OR AT24CXXX 系列
只要控制好IICRM IICSTP IICSTT 其硬件会自动完成
SCL SDA的一系列时序 只要注意各个发送与接收的控制标志位. ******************************************/ #include volatile uns
I2C程序和流程图
程序和流程图: IIC.h
void Init_IIC(void);
void EEPROM_ByteWrite(unsigned char nAddr,unsigned char nVal); unsigned char EEPROM_RandomRead(unsigned char nAddr); unsigned char EEPROM_CurrentAddressRead(void); void EEPROM_AckPolling(void); void Init_CLK(void); void Init_IIC_Port(void); Main.C
/*******************************************
IIC for AT24c16 OR AT24CXXX 系列
只要控制好IICRM IICSTP IICSTT 其硬件会自动完成
SCL SDA的一系列时序 只要注意各个发送与接收的控制标志位. ******************************************/ #include volatile uns
I2C时序与SLE4442传送协议区别
I2C时序与SLE4442传送协议区别
SLE4442传送协议: 1.复位和复位响应
复位和复位响应是根据ISO7816-3标准来进行的。在操作期间的任意时候都可以复位。开始,地址计数器随一个时钟脉冲而被设置为零。当RST线从高状态(H)置到低状态(L)是,第一个数据位(LSB)的内容
被送到I/O上。若连续输入32个时钟脉冲,主存储器中的前四个字节地址单元中的内容被读出。在第33个时钟脉冲的下降沿,I/O线被置成高状态而关闭。 2. 命令模式
复位响应以后,芯片等待着命令。每条命令都以一个“启动状态”开始。整个命令包括3个字节。随后紧跟着一个附加脉冲并用一个“停止状态”来结束操作。
i)启动状态: CLK为高状态(H状态)期间,I/O显得下降沿为启动状态。 ii)停止状态:在CLK为高状态(H状态)期间,I/O显得上升沿为停止状态。 命令模式的时序关系:
2.4.3 输出数据模式:
这种模式是将IC卡芯片中的数据传送给外部设备接口(IFD)的一种操作。
输出数据模式的时序关系:
在第一个CLK脉冲的下降沿之后,I/O线上的第一位数据变为有效。随后每增加一个时钟脉冲,芯片内部的一位数据被送到I/O线上。其传输顺序是从每个字节的最低位(L