高中数学立体几何证明技巧
“高中数学立体几何证明技巧”相关的资料有哪些?“高中数学立体几何证明技巧”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高中数学立体几何证明技巧”相关范文大全或资料大全,欢迎大家分享。
高中数学立体几何证明题汇总
新课标立体几何证明题汇总
1、已知四边形ABCD是空间四边形,E,F,G,H分别是边AB,BC,CD,DA的中点 (1) 求证:EFGH是平行四边形
(2) 若BD=23,AC=2,EG=2。求异面直线AC、BD所成的角和EG、BD所成的角。
A B
F C
G D
E H
证明:在?ABD中,∵E,H分别是AB,AD的中点∴EH//BD,EH?同理,FG//BD,FG?(2) 90° 30 °
考点:证平行(利用三角形中位线),异面直线所成的角
1BD 21BD∴EH//FG,EH?FG∴四边形EFGH是平行四边形。 22、如图,已知空间四边形ABCD中,BC?AC,AD?BD,E是AB的中点。 求证:(1)AB?平面CDE;
(2)平面CDE?平面ABC。
A E
BC?AC?证明:(1)??CE?AB
AE?BE?同理,
AD?BD???DE?AB
AE?BE?B
C
又∵CE?DE?E ∴AB?平面CDE (2)由(1)有AB?平面CDE
又∵AB?平面ABC, ∴平面CDE?平面ABC 考点:线面垂直,面面垂直的判定
D
3、如图,在正方体ABCD?A1B1C1D1中,E是AA1的中点,
高中数学立体几何详细教案
【中学数学教案】
立体几何
教案
一,空间直线与直线的关系 a ,相交 b ,平行 c ,异面 a ,
相交直线 空间中
平行于同一条直线的两条直线平行 b, 平行公理: c, 异面直线: 1,求异面直线所成角问题 注:利用平
行公理找角,利用余弦定理计算,结果要锐角或直角
??
0?090异面直线所成角的范围
, ㈠
平移法利用平行公理把异面直线所成的角转化为相交直线所成的角 CCABDBABCD?B和C 例:正方体中,E,F分别是中点,则直线AE111111
和BF所成角的余弦值 ㈡ 补形法 补形:底面是直角三角形的直三棱柱可以补成一个长方体 ?CAB 例:在直三棱柱中,,点分别是
90DF?ABC,?BCA?11111CCABA
中点,
BC=CA=,则所成角的余弦值 CDF,B与A1111111 1303015A、
B、 C、 D、 2101510 2,求异面直线之间的距离问题 和两条异面直线垂直相交的直线叫做异面直线的公垂线, 公垂线夹在两条异面直线之间的长度叫做
高中数学立体几何三视图
.
三视图
一、体积公式
1、柱体(棱柱、圆柱):V=__________
2、椎体(棱锥、圆锥):V=__________
3、台体(棱台、圆台):V=__________
4、球:V=__________
二、面积公式
1、柱体侧面积:S?________
2、棱锥侧面积:S?________
3、圆锥侧面积:S?________
4、球的表面积:S?________
5、梯形面积:S?________
6、对角线垂直的四边形面积:S?________
一、简单几何体
.
.
1.(2012全国)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( ) A.6 B.9 C.?? D.??
2.(2013陕西)某几何体的三视图如图所示, 则其体积为________,表面积是____________
2111
3.在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为( )
A. B. C.
高中数学立体几何题库全练习
选校网 d650bb1a10a6f524ccbf85b8 高考频道 专业大全 历年分数线 上万张大学图片 大学视频 院校库
选校网 d650bb1a10a6f524ccbf85b8 专业大全 历年分数线 上万张大学图片 大学视频 院校库 立体几何基础题题库二(有详细答案)
361. 有一个三棱锥和一个四棱锥,棱长都相等,将它们一个侧面重叠后,还有几个暴露面?
解析:有5个暴露面.
如图所示,过V 作VS ′∥AB ,则四边形S ′ABV 为平行四边形,有∠S ′VA=∠VAB=60°,从而Δ
S ′VA 为等边三角形,同理ΔS ′VD 也是等边三角形,从而ΔS ′AD 也是等边三角形,得到以ΔVAD 为底,以S ′与S 重合.
这表明ΔVAB 与ΔVSA 共面,ΔVCD 与ΔVSD 共面,故共有5个暴露面.
362. 若四面体各棱长是1或2,且该四面体不是正四面体,则其体积的值是 .(只须写出一个可能的值)
解析: 该题的显著特点是结论发散而不惟一.本题表面上是考查锥体求积公式这个知识点,实际上主要考查由所给条件构造一个四面体的能力,首先得考虑每个面的三条棱是如何构成的.
排除{1,1,2},可得{1,1,1},{1,2,2},{2,2,2},
高中数学立体几何真题试题大全
. .
上海立体几何高考试题汇总
(01春)若有平面?与?,且????l,???,P??,P?l,则下列命题中的假命题为( )
(A)过点P且垂直于?的直线平行于?.(B)过点P且垂直于l的平面垂直于?. (C)过点P且垂直于?的直线在?内. (D)过点P且垂直于l的直线在?内.
(01)已知a、b为两条不同的直线,α、β为两个不同的平面,且a⊥α,b⊥β,则下列命题中的假命题是( )D
A. 若a∥b,则α∥β B.若α⊥β,则a⊥b
C.若a、b相交,则α、β相交 D.若α、β相交,则a、b相交
(02春)下图表示一个正方体表面的一种展开图,图中四条线段AB、CD、EF和GH 在原正
方体中相互异面的有 对。3
(02)若正四棱锥的底面边长为23cm,体积为4cm3,则它的侧面与底面所成的二面角的大小是 30?
(03春)关于直线a,b,l以及平面M,N,下列命题中正确的是( ).
(A) 若a//M,b//M,则a//b (B) 若a//M,b?a,则b?M
(C) 若a?M,b?M,且l?a,l?b,则l?M
浅谈高中数学新课程中“立体几何”
浅谈高中数学新课程中
“立体几何”部分的内容与要求
张劲松
2003年4月教育部正式颁布实施《普通高中数学课程标准(实验)》(以下简称《标准》)。与《标准》配套的《普通高中课程标准实验教科书·数学》于2004年秋季开始在山东、广东、海南、宁夏进行实验,2005年秋季又扩大到江苏,到2006年秋季,福建、浙江、安徽、辽宁、天津加入,共有10省(区、直辖市)使用《普通高中课程标准实验教科书·数学》。
这次高中数学课程改革比较突出的特点是在“构建共同基础,提供发展平台”的前提下,“提供多样课程,适应个性选择”“强调本质”“注意提高学生的数学思维能力”“发展学生的数学应用意识”等等。具体做法是,课程内容分为诸多模块和专题,突出数学教科书的“数学味”,注重从现实情景引入数学知识,用数学处理具体的实际问题等等。实事求是地讲,《标准》设计的理念和思路都是非常好的,作为《标准》最主要的载体——教材在实验过程中,有很多积极的评价。但也存在不少问题,比较突出的是《标准》把“内容与要求”合在一起写。有些内容不明确,教还是不教,难以把握。本文结合《标准》《普通高中课程标准实验教科书·数学》和实验教师的反映,以“立体几何”部分的内容与要求为例,谈
浅谈高中数学新课程中“立体几何”
浅谈高中数学新课程中
“立体几何”部分的内容与要求
张劲松
2003年4月教育部正式颁布实施《普通高中数学课程标准(实验)》(以下简称《标准》)。与《标准》配套的《普通高中课程标准实验教科书·数学》于2004年秋季开始在山东、广东、海南、宁夏进行实验,2005年秋季又扩大到江苏,到2006年秋季,福建、浙江、安徽、辽宁、天津加入,共有10省(区、直辖市)使用《普通高中课程标准实验教科书·数学》。
这次高中数学课程改革比较突出的特点是在“构建共同基础,提供发展平台”的前提下,“提供多样课程,适应个性选择”“强调本质”“注意提高学生的数学思维能力”“发展学生的数学应用意识”等等。具体做法是,课程内容分为诸多模块和专题,突出数学教科书的“数学味”,注重从现实情景引入数学知识,用数学处理具体的实际问题等等。实事求是地讲,《标准》设计的理念和思路都是非常好的,作为《标准》最主要的载体——教材在实验过程中,有很多积极的评价。但也存在不少问题,比较突出的是《标准》把“内容与要求”合在一起写。有些内容不明确,教还是不教,难以把握。本文结合《标准》《普通高中课程标准实验教科书·数学》和实验教师的反映,以“立体几何”部分的内容与要求为例,谈
高中数学立体几何课课同步检测8
高中数学立体几何课课同步检测8 (§9.3—9.4 测试卷)
江苏省清江中学:尚月如
班级 学号 姓名
一、选择题
1.下列命题正确的是 ( ) A.a//b?a??? ??//bB.???a//b
a???b??? C.a???a//?? ?b//?D.???b??
a?b?a?b?2.若直线a//平面α,直线a?β,且α∩β=b,则a,b关系为 ( ) A. a⊥b B. a∩b=A C.a//b D. 异面直线 3.下列说法不正确的是 ( ) (1)一条直线垂直于一个平面内的无数条直线,则这条直线和这个平面垂直; (2)经过一点和一条已知直线垂直的直线都在同一平面内; (3)一个平面内不
高中数学立体几何习题精选精讲
篇一:高中数学_椭圆习题精选精讲素材_
椭圆知识点
知识要点小结:知识点一:
椭圆的定义
平面内一个动点P到两个定点F1、F2的距离之和等于常数(PF1?PF2?2a?F1F2) ,这个动点P的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.
注意:若(PF1?PF2?F1F2),则动点P的轨迹为线段F1F2;若(PF1?PF2?F1F2),则动点P的轨迹无图形.
知识点二:椭圆的标准方程
x2y2222
1.当焦点在x轴上时,椭圆的标准方程:2?2?1(a?b?0),其中c?a?b
ab
y2x2222
2.当焦点在y轴上时,椭圆的标准方程:2?2?1(a?b?0),其中c?a?b;注意:1.只有当椭
ab
圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时, 才能得到椭圆的标准方程;2.在椭圆的两种标准方程中,都有(a?b?0)和c2?a2?b2;3.椭圆的焦点总在长轴上.
当焦点在x轴上时,椭圆的焦点坐标为(c,0),(?c,0); 当焦点在y轴上时,椭圆的焦点坐标为(0,c),(0,?c) 知识点三:椭圆的简单几何性质
x2y2
椭圆:2?2?1(a?b?0)的简单几何性质
ab
x2y2
(1)对称性:对于椭圆标准方程2?2?1(a?b?0):说明:
ab
高中数学立体几何知识点总结
立体几何
空间几何体的三视图和直观图
1 三视图:正视图:从前往后 侧视图:从左往右 俯视图:从上往下
2 画三视图的原则: 长对正、高平齐、宽相等
3直观图:斜二测画法(角度等于45度或者135度)
4斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y轴的线长度变半,平行于x轴的线长度不变;(3).画法要写好。
空间几何体的表面积与体积
(一 )空间几何体的表面积:1棱柱、棱锥的表面积: 各个面面积之和
2 圆柱的表面积 S 2 rl 2 r3 圆锥的表面积:S2 rl r2
222S rl r Rl R4 圆台的表面积 5 球的表面积S 4 R
6扇形的面积公式S扇形n R21 lr(其中l表示弧长,r表示半径) 3602
注:圆锥的侧面展开图的弧长等于地面圆的周长
(二)空间几何体的体积
1柱体的体积 V S底 h 2锥体的体积 V 1S底 h 3
13台体的体积
V S上 3
平面的基本性质 43 S下) h 4球体的体积V R 3
公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面