空间向量四点共面定理
“空间向量四点共面定理”相关的资料有哪些?“空间向量四点共面定理”相关的范文有哪些?怎么写?下面是小编为您精心整理的“空间向量四点共面定理”相关范文大全或资料大全,欢迎大家分享。
3.1.3空间向量的基本定理
3.1.3空间向量基本定理
教学目标:
1.掌握空间向量基本定理及其推论,理解空间任意一向量可以用三个不共
面的向量线性表示,并且这种表示是唯一的。
2.在简单的问题中,会选择适当的基底表示任一空间向量
教学重点:空间向量基本定理
教学难点:会用适当的基底表示任一空间向量
教学过程:
一.复习回顾
1、平面向量共线定理
2、平面向量基本定理
3 共面向量定理:
问题思考:空间任意一向量能用三个不共面的向量来线性表示吗?
二数学建构
空间向量基本定理:
基底:
单位正交基底:
说明:1、空间中任意不共面的三个向量都可以构成空间的一个基底;
2、由于零向量可以认为与任意一个向量共线,与任意两个向量共面,所以三个
向量不共面,就隐含着它们都不是零向量;
3、一个基底是一组向量,一个基向量是基底中的某一个向量.
推论:
三 典型例题
例1.已知向量 是空间的一个基底,从
中选哪一个向量,一定可以与向量 , 构成空间的另一个基底?
变式:已知空间四边形OABC ,M 和N 分别是OA 、BC 的中点,点G 在MN 上,且使MG=2GN ,试用基底 表示向量 .
{,,}a b c ,,a b c =+p a b =-p a b
''''',,
空间向量知识点归纳总结(经典)
空间向量与立体几何知识点归纳总结
一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)向量具有平移不变性 2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
????运算律:⑴加法交换律:a?b?b?a
??????⑵加法结合律:(a?b)?c?a?(b?c)
????⑶数乘分配律:?(a?b)??a??b
?????????????????????????????????OB?OA?AB?a?b;BA?OA?OB?a?b;OP??a(??R)
运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共
??线向量或平行向量,a平行于b,记作
?????(2)共线向量定理:空间任意两个向量a、b(b≠0),a//b存在实数
??a//b。 ???λ,使a=λb。
(3)三点共线:A、B、C三点共线<=>AB??AC
<=>OC?xOA?yOB(其中x?y?1)
?a(4)与共线的单位向量为
aa
???x,y使
从平面向量到空间向量
从平面向量到空间向量学案
第一节 :从平面向量到空间向量
设计人:陈维江 审核人:席静
上课时间: 班级: 姓名:
学习目标:1、理解空间向量的概念;
2、掌握空间向量的几何表示法和字母表示法;
3、掌握两个空间向量的夹角、空间向量的方向向量和平面的法向量的概念。
学习重点:理解两个向量的夹角、直线的方向向量、平面的法向量等概念 学习难点:理解共面向量的概念
新课学习:
看课本25-26页回答下列问题:
从平面向量到空间向量学案
做27页练习 总结:本节概念较多,多看课本,理解概念是关键。 课后作业:
课堂新坐标(教师用书)高中数学 3.1.3+4 空间向量基本定理 空间向量的坐标表示课后知能
【课堂新坐标】(教师用书)2013-2014学年高中数学 3.1.3+4 空间向量基本定理 空间向量的坐标表示课后知能检测 苏教版选修2-1
一、填空题
1.设命题p:a,b,c是三个非零向量,命题q:{a,b,c}为空间的一个基底,则命题p是命题q的______条件(填“充分不必要”“必要不充分”“充要”“既不充分又不必要”).
【解析】 命题q中,{a,b,c}为空间的一个基底,则根据基底的定义,可知a,b,
c为非零向量,且为不共面向量.故q?p,p【答案】 必要不充分
q,所以命题p是命题q的必要不充分条件.
2.设向量a,b,c不共面,则下列可作为空间的一个基底的是________. ①{a+b,b-a,a}; ②{a+b,b-a,b}; ③{a+b,b-a,c}; ④{a+b+c,a+b,c}.
【解析】 因为只有③中三个向量不共面,所以可以作为一个基底. 【答案】 ③
3.已知{i,j,k}为空间的一个基底,若a=i-j+k,b=i+j+k,c=i+j-k,d=3i+2j-4k,又d=α a+β b+γc,则α=________,β=________,γ=________.
α+β+γ=3??
【解析】 由题意知:?-α+β
空间向量与立体几何知识点归纳总结
一对一授课教案
学员姓名: 年级: 所授科目:
上课时间: 年 月 日 时 分至 时 分共 小时
老师签名 教学主题 上次作业检查 本次上课表现 本次作业 空间向量与立体几何 学生签名
一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)向量具有平移不变性 2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
????运算律:⑴加法交换律:a?b?b?a
??????⑵加法结合律:(a?b)?c?a?(b?c)
????⑶数乘分配律:?(a?b)??a??b
? ????????????????????????????????OB?OA?AB?a?b;BA?OA?OB?a?b;OP??a(??R)
???b,记作a//b。
运算法则:三角形法则、平行四边形法则、平行六面体法则 3
8.6 空间向量及其运算
8.6 空间向量及其运算
一、选择题
1.若{a,b,c}为空间的一组基底,则下列各项中,能构成基底的一组向量是( ).
A.{a,a+b,a-b} C.{c,a+b,a-b}
B.{b,a+b,a-b} D.{a+b,a-b,a+2b}
解析 若c、a+b、a-b共面,则c=λ(a+b)+m(a-b)=(λ+m)a+(λ-m)b,则a、b、c为共面向量,此与{a,b,c}为空间向量的一组基底矛盾,故c,a+
b,a-b可构成空间向量的一组基底. 答案 C
2.以下四个命题中正确的是( ).
A.空间的任何一个向量都可用其他三个向量表示
B.若{a,b,c}为空间向量的一组基底,则{a+b,b+c,c+a}构成空间向量的另一组基底
→
→
C.△ABC为直角三角形的充要条件是AB·AC=0 D.任何三个不共线的向量都可构成空间向量的一组基底
解析 若a+b、b+c、c+a为共面向量,则a+b=λ(b+c)+μ(c+a),(1-λ-1μ)a=(λ-1)b+(λ+μ)c,λ,μ不可能同时为1,设μ≠1,则a=b1-μλ+μ+c,则a、b、c为共面向量,此与{a,b,c}为空间向量基底矛盾. 1-μ答案 B
3.有下列命题:
①若p=xa+y
空间向量及其运算知识
空间向量及其运算
1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量 注:⑴空间的一个平移就是一个向量 ⑵向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量 ⑶空间的两个向量可用同一平面内的两条有向线段来表示 2.空间向量的运算
定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下
?????OB?OA?AB?a?b;BA?OA?OB?a?b;OP??a(??R)
????运算律:⑴加法交换律:a?b?b?a
??????⑵加法结合律:(a?b)?c?a?(b?c)
????⑶数乘分配律:?(a?b)??a??b
a3.平行六面体:
?平行四边形ABCD平移向量a到A?B?C?D?的轨迹所形成的几何体,
D'A'B'C'DC叫做平行六面体,并记作:ABCD-A?B?C?D?它的六个面都是平行四边A形,每个面的边叫做平行六面体的棱 B4. 平面向量共线定理
方向相同或者相反的非零向量叫做平行向量.由于任何一组平行向量都可以平移到同一条直线上,所以平行向量也叫做共线向量.
????向量b与非零向量a共线的充要条件是有且只有一个实数λ,使b=λa.
?要注意其中对向量a的非零要求.
5 共线向量
如果表示空间向量的有向线
2.3.1平面向量基本定理
平面向量基本定理
2014年9月18日星期四
一、课前准备: 复习1: 共线向量定理: (思考:为什么限定 a 0 向量a (a 0)与b共线,当且仅当有唯一一个实数 , 使b a.
?)
(若a 0,当b 0时, 不唯一;当b 0时, 不存在) 复习2 : 给定平面内任意两个向量e1 , e2 , 我们能否作出向量2e1 3e2 ?向 量 的 合 成
d 2e1 3e 2
e2 e1
d
2014年9月18日星期四
如: 已知 e1 , e2 , 是同一平面内的两个
不共线向量,a 是这一平面内的任一向量. 探究: a 与 e1 , e2 , 的关系
e1
想 一 想 ?
ae2
2014年9月18日星期四
学生活动:
OC OM ON 1OA 2 OB即
a 1 e1 2 e2Me1A
e1
a
C
e2
向 量 的 分 解
O
N
e2
B
2014年9月18日星期四
知识点一
平面向量基本定理a,
1. 如果 e1 , e2 是同一平面内的两个不共线向量,
那么对于这一平面的任意向量
有且只有 一对实数 1 , 2 ,使 存 唯 在 性把不共线的向量 基底
a 1 e1 2 e2
一叫做表示这一平面内所有向量
2.3.1平面向量基本定理
平面向量基本定理
2014年9月18日星期四
一、课前准备: 复习1: 共线向量定理: (思考:为什么限定 a 0 向量a (a 0)与b共线,当且仅当有唯一一个实数 , 使b a.
?)
(若a 0,当b 0时, 不唯一;当b 0时, 不存在) 复习2 : 给定平面内任意两个向量e1 , e2 , 我们能否作出向量2e1 3e2 ?向 量 的 合 成
d 2e1 3e 2
e2 e1
d
2014年9月18日星期四
如: 已知 e1 , e2 , 是同一平面内的两个
不共线向量,a 是这一平面内的任一向量. 探究: a 与 e1 , e2 , 的关系
e1
想 一 想 ?
ae2
2014年9月18日星期四
学生活动:
OC OM ON 1OA 2 OB即
a 1 e1 2 e2Me1A
e1
a
C
e2
向 量 的 分 解
O
N
e2
B
2014年9月18日星期四
知识点一
平面向量基本定理a,
1. 如果 e1 , e2 是同一平面内的两个不共线向量,
那么对于这一平面的任意向量
有且只有 一对实数 1 , 2 ,使 存 唯 在 性把不共线的向量 基底
a 1 e1 2 e2
一叫做表示这一平面内所有向量
第11讲向量组的秩与向量空间
陕西科技大学基础课部数学教研室
第十一讲 向量组的秩与向量空间
陕西科技大学基础课部数学教研室
§4.3 向量组的秩 §4.5 向量空间
陕西科技大学基础课部数学教研室
第三节
向量组的秩
陕西科技大学基础课部数学教研室
一、向量组的秩1.极大线性无关组 极大线性无关组 如果在A中能选出 个向量a 设有向量组 A ,如果在 中能选出 r 个向量 1 , a2 ,…,ar,满足: 满足: 1)向量组 0:a1,a2,…,ar线性无关; 向量组A 线性无关; 向量组 2)向量组 中的任一向量均可被向量组 0线性表示; 向量组A中的任一向量均可被向量组 向量组 中的任一向量均可被向量组A 线性表示; 或者满足: 或者满足: 1)向量组 向量组A 线性无关; 1)向量组 0:a1,a2,…,ar线性无关; 2)向量组 中的任何r+1个向量都线性相关 向量组A中的任何 个向量都线性相关; 2)向量组 中的任何 个向量都线性相关; 那么称向量组A 是向量组A的一个极大线性无关组 的一个极大线性无关组. 那么称向量组 0是向量组 的一个极大线性无关组.
陕西科技大学基础课部数学教研室
向量组的极大线性无关组一般是不唯一的。 向量组的极大线性无关组一般是不唯