饿狼追兔问题数学建模实验报告
“饿狼追兔问题数学建模实验报告”相关的资料有哪些?“饿狼追兔问题数学建模实验报告”相关的范文有哪些?怎么写?下面是小编为您精心整理的“饿狼追兔问题数学建模实验报告”相关范文大全或资料大全,欢迎大家分享。
饿狼追兔问题数学建模
数学建模
饿狼追兔问题
摘要
本文研究饿狼追兔问题,是在给定狼兔相对位置,以及兔子巢穴位置的情况下求解的,狼的速度是兔子速度两倍,在不考虑其他任何因素的情况下研究狼能否追上兔子的问题。
首先,我们对问题进行了适当的分析,然后根据已知条件建立了狼的运动轨迹微分模型。
其次,根据建好的模型,运用MATLAB编程,然后仿真画出了饿狼和野兔的运动轨迹图。
再次,用解析方法将建立的模型求解,并给出该问题的结论,准确的回答题目。 最后,用数值方法求解,将所求与前面所求进行对比,也给出结论,回答题目。并将两种方法做相应比较。
结论:野兔可以安全回巢
关键词:算法 高阶常微分方程
§1.1问题的提出
在自然界中,各种生物都有它的生活规律,它们钩心斗角,各项神通,在饿狼追野
兔的工程中,饿狼的速度是野兔的二倍,但是野兔有自己的洞穴,野兔在跑到自己洞穴之
前被狼捉住,野兔就将会成为饿狼的囊中之物;如果野兔在饿狼捉住自己之前跑回到自己的洞穴,那么野兔就保住小命,得以生还。 图1-1-1为饿狼追野兔的两条曲线,其中绿线表示野兔,图中的箭头表示的是野兔的奔跑方向,野兔从远点开始沿y轴正方向运动,其洞穴在坐标为(0,60)的位置;红线为饿狼的运动
饿狼追兔模型研究
数学建模
辽宁工程技术大学
数 学 建 模 课 程 成 绩 评 定 表
学 期 姓 名 专 业 班 级 课程名称 数学建模 论文题目 高阶常微分方程模型—饿狼追兔问题 评定指标 分值 得分 知识创新性 20 理论正确性 20 内容难易性 15 评 结合实际性 10 知识掌握程度 15 定 书写规范性 10 标 工作量 10 准总成绩 100 评语: 任课教师 时 间 09年 月 日 备 注 - 1 -
年珊珊:饿狼追兔问题
饿狼追兔模型研究
摘要:本文建立狼的运动轨迹微分模型;在各种假设的情况下,通过数形结合的直观形象
的画出兔子与狼的运动轨迹图形;采用解析方法和数值方法,研究兔子与狼的运行轨迹,编写matlab程序建立追击问题的数值模型。
关键词:饿狼追兔 数值解析 微分方程 求解
1 问题的背景
1.1 问题的背景
狼追兔子问题是欧洲文艺复兴时代的著名人物达.芬奇提出的一个数学问题。现有一只兔子、一匹狼,兔子位于狼的正西100米处,假设兔子与狼同时发现对方并一起起跑,兔子往正北60米处的巢穴跑,而狼在追兔子。已知兔子、狼是匀速跑且狼的速度是兔子的
饿狼追兔模型研究
数学建模
辽宁工程技术大学
数 学 建 模 课 程 成 绩 评 定 表
学 期 姓 名 专 业 班 级 课程名称 数学建模 论文题目 高阶常微分方程模型—饿狼追兔问题 评定指标 分值 得分 知识创新性 20 理论正确性 20 内容难易性 15 评 结合实际性 10 知识掌握程度 15 定 书写规范性 10 标 工作量 10 准总成绩 100 评语: 任课教师 时 间 09年 月 日 备 注 - 1 -
年珊珊:饿狼追兔问题
饿狼追兔模型研究
摘要:本文建立狼的运动轨迹微分模型;在各种假设的情况下,通过数形结合的直观形象
的画出兔子与狼的运动轨迹图形;采用解析方法和数值方法,研究兔子与狼的运行轨迹,编写matlab程序建立追击问题的数值模型。
关键词:饿狼追兔 数值解析 微分方程 求解
1 问题的背景
1.1 问题的背景
狼追兔子问题是欧洲文艺复兴时代的著名人物达.芬奇提出的一个数学问题。现有一只兔子、一匹狼,兔子位于狼的正西100米处,假设兔子与狼同时发现对方并一起起跑,兔子往正北60米处的巢穴跑,而狼在追兔子。已知兔子、狼是匀速跑且狼的速度是兔子的
饿狼追兔模型研究
数学建模
辽宁工程技术大学
数 学 建 模 课 程 成 绩 评 定 表
学 期 姓 名 专 业 班 级 课程名称 数学建模 论文题目 高阶常微分方程模型—饿狼追兔问题 评定指标 分值 得分 知识创新性 20 理论正确性 20 内容难易性 15 评 结合实际性 10 知识掌握程度 15 定 书写规范性 10 标 工作量 10 准总成绩 100 评语: 任课教师 时 间 09年 月 日 备 注 - 1 -
年珊珊:饿狼追兔问题
饿狼追兔模型研究
摘要:本文建立狼的运动轨迹微分模型;在各种假设的情况下,通过数形结合的直观形象
的画出兔子与狼的运动轨迹图形;采用解析方法和数值方法,研究兔子与狼的运行轨迹,编写matlab程序建立追击问题的数值模型。
关键词:饿狼追兔 数值解析 微分方程 求解
1 问题的背景
1.1 问题的背景
狼追兔子问题是欧洲文艺复兴时代的著名人物达.芬奇提出的一个数学问题。现有一只兔子、一匹狼,兔子位于狼的正西100米处,假设兔子与狼同时发现对方并一起起跑,兔子往正北60米处的巢穴跑,而狼在追兔子。已知兔子、狼是匀速跑且狼的速度是兔子的
数学建模实验报告
Lingo软件的上机实践应用
《数学建模实验报告》
Lingo软件的上机实践应用
简单的线性规划与灵敏度分析
学号: 班级: 姓名: 日期: 2010-7-21
数学与计算科学学院
Lingo软件的上机实践应用
一、 实验目的:
通过对数学建模课的学习,熟悉了matlab和lingo等数学软件的简单应用,了解了用lingo软件解线性规划的算法及灵敏性分析。
此次lingo上机实验又使我更好地理解了lingo程序的输入格式及其使用,增加了操作连贯性,初步掌握了lingo软件的基本用法, 会使用lingo计算线性规划题,掌握类似题目的程序设计及数据分析。
二、 实验题目(P55课后习题5):
某工厂生产A1、A2两种型号的产品都必须经过零件装配和检验两道工序,如果每天可用于零件装配的工时只有100h,可用于检验的工时只有120h,各型号产品每件需占用各工序时数和可获得的利润如下表所示:
(1)试写出此问题的数学模型,并求出最优化生产方案。 (2)对产品A1的利润进行灵敏度分析 (3)对装配工序的工时进行灵敏度分析
(4)如果工厂试制了A3型产品,每件A3产品需装配工时4h,检验工时2h,可获利润5元,那么该产
数学建模实验报告
数学建模实验报告
班级:信息81 学号:07052023 姓名:杨帆
实验一 : 实验题目:
有3名商人各带一个仆人乘船渡河,小船只能容纳两个人,由他们自己划船。仆人们约定,在河的一岸,一旦仆人的人数比商人多,就杀人越货。但是如何乘船的大权掌握在商人们手里。问商人们怎样才能安全渡河? 实验过程: 问题分析:
这是是一个多步决策问题。每一步,即船由此岸驶向彼岸或从彼岸回到此岸,都要对船上的商人和仆人的个数作出决策。在保证安全的前提下,在有限步内使全部人员过河。采用状态变量表示某一岸的人员状况,决策变量表示船上人员状况。可以找出状态随决策变化的规律,问题转化为在状态允许范围内(安全渡河的条件),确定每一步的决策,达到安全渡河的条件 1.建立数学模型:
1)允许状态集合S:安全渡河条件下的状态集合为允许的状态集合,记作S,依次用二维向量表示商人仆人的状态,设第k次渡河前左岸的商人数为xk,仆人数为yk,k=1,2,…,则状态变量为(xk,yk),其中xk,yk取值为0,1,2,3。容易知道该集合为
S={(0,0),(0,1),(0,2),(0,3),(3,0),(3,1),(3,2),(1,1),(2,2),(3,3)} —— (1.1)
数学建模实验报告
目录
目录 .................................................................................................................................................. 1 一、Matlab基本操作与微积分计算 .............................................................................................. 4
(一)实验目的 ....................................................................................................................... 5 (二)实验学时 .......................................................................................................................
数学建模实验报告
目录
目录 .................................................................................................................................................. 1 一、Matlab基本操作与微积分计算 .............................................................................................. 4
(一)实验目的 ....................................................................................................................... 5 (二)实验学时 .......................................................................................................................
数学建模实验报告实验六
《国土面积计算的研究方案》
实验报告
实验项目:插值与拟合问题
实验地点:实验室名称:
学院:管理科学与工程学院年级专业班:工程管理111
学生姓名:刘继壮学号: 11062110
完成时间:2013-04-20 教师评语:
开课时间:至学年第学期
成绩
教师签名
批阅日期
国土面积计算的研究方案
1 问题重述
已知欧洲一个国家的地图,为了算出它的国土面积和边界长度,首先对地图作如下
测量:以由西向东方向为x 轴,由南向北方向为y 轴,选择方便的原点,并将从最西边
界点到最东边界点在x 轴上的区间适当地分为若干段,在每个分点的y 方向测出南边界
点和北边界点的y 坐标1y 和2y ,这样就得到了表8的数据(单位:mm )。 表8 某国国土地图边界测量值(单位:mm )
x
7.0 10.5 13.0 17.5 34.0 40.5 44.5 48.0 56.0 1y 44 45 47 50 50 38 30 30 34
2y 44 59 70 72 93 100 110 110 110
x 61.0
68.5 76.5 80.5 91.0 96.0 101.0 104.0 106.5 1y 36 34 41 45 46 43 37 33 28
2y 117
数学建模 猎狗追兔子问题
数学建模论文
《数学建模》(公选课,2014春)课程论文
《数学建模》(2014
题 目 成 员 学生1 学生2 姓 名 春)课程期末论文
题 号 A 联系电话 猎狗追兔子问题 学 号 班 级 学 院
摘要
(一) 对于问题一:自然科学中存在许多变量,也有许多常量,而我们要善于通
过建立合适的模型找到这些变量之中的不变量。
猎狗追赶兔子的问题是我们在生活中常见的实例,而题目把我们生活中的普通的例
子抽象成为高等数学中微分方程的例子,通过对高阶微分方程的分析,建立微分方程模型,并用数学软件编写程序求解,得出结论,解决生活中常见的实际问题。
(二) 对于问题二:学习使用matlab进行数学模型的求解,掌握常用计算机软件的使用方法。
关键词
微分方程 导数的几何意义 猎狗追兔子 数学建模 数学软件
1
《数学建模》(公选课,2014春)课程论文
一、问题重述
如图1所示,有一只猎狗在B点位置,发现了一只兔子在正东北方距离它250m的地方O处,
此时兔子开始以8m/s的速度正向正西北方向,距离为150m的洞口A全速跑去. 假设猎狗在追赶兔子的时候,始终朝着兔子的方向全速奔跑。
N 请回答下面的问题:
⑴ 猎狗