小学数学中的转化思想有哪些
“小学数学中的转化思想有哪些”相关的资料有哪些?“小学数学中的转化思想有哪些”相关的范文有哪些?怎么写?下面是小编为您精心整理的“小学数学中的转化思想有哪些”相关范文大全或资料大全,欢迎大家分享。
转化思想在小学数学中的应用
转化思想在小学数学中的应用杨摘要
茜
(河南省洛阳市实验小学河南 洛阳 4 7 1 0 0 1 )辩证唯物主义认为,事物之间是普遍联系的,又是可以相互转化的。新数学课程标准提出的总体目标之一, 就是让学生“获得适应未来社会生活和继续学习所必需的数学基本知识及基本的数学思想方法”。小学数学中的转化思想,渗透于各类知识之中,在教学的各个阶段都起重要的作用。同时,转化思想是数学思想的核心和精髓,是数学思
想的灵魂。因此,要使学生获得必要的数学思想方法,首先应加强转化思想的训练和培养。关键词小学数学转化思想训练文献标识码: A升,这个铁块的体积就是多少立方厘米。方法四:可以请铁匠师傅帮个忙,让他敲打成一个规则的长方体后再计算。 这时,学生在转化思想的影响下,茅塞顿开,将一道生活中的数学问题既形象又有创意地解决了。从这里可以看出: 学生掌握了转化的数学思想方法,就犹如有了一位“隐形”的教师,从根本上说就是获得了自己独立解决数学问题的能力。 3化曲为直,突破空间障碍“化曲为直”的转化思想是小学数学曲面图形面积学习的主要思想方法。它可以把学生的思维空间引向更宽更广的层次,形成一个开放的思维空间,为学生今后的发展打下坚实的基础。
中图分类号: G6 2 3 . 5
转化思想在小学数学中的应用
转化思想在小学数学中的应用杨摘要
茜
(河南省洛阳市实验小学河南 洛阳 4 7 1 0 0 1 )辩证唯物主义认为,事物之间是普遍联系的,又是可以相互转化的。新数学课程标准提出的总体目标之一, 就是让学生“获得适应未来社会生活和继续学习所必需的数学基本知识及基本的数学思想方法”。小学数学中的转化思想,渗透于各类知识之中,在教学的各个阶段都起重要的作用。同时,转化思想是数学思想的核心和精髓,是数学思
想的灵魂。因此,要使学生获得必要的数学思想方法,首先应加强转化思想的训练和培养。关键词小学数学转化思想训练文献标识码: A升,这个铁块的体积就是多少立方厘米。方法四:可以请铁匠师傅帮个忙,让他敲打成一个规则的长方体后再计算。 这时,学生在转化思想的影响下,茅塞顿开,将一道生活中的数学问题既形象又有创意地解决了。从这里可以看出: 学生掌握了转化的数学思想方法,就犹如有了一位“隐形”的教师,从根本上说就是获得了自己独立解决数学问题的能力。 3化曲为直,突破空间障碍“化曲为直”的转化思想是小学数学曲面图形面积学习的主要思想方法。它可以把学生的思维空间引向更宽更广的层次,形成一个开放的思维空间,为学生今后的发展打下坚实的基础。
中图分类号: G6 2 3 . 5
浅谈“转化”思想在小学数学教学中的应用
浅谈“转化”思想在小学数学教学中的应用
浅谈“转化”思想在小学数学教学中的应用 《数学课标(实验稿)》中指出:“学生通过学习,能够获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法。”小学数学是义务教育的一门重要学科,它是为学生后续学习打基础的,它蕴含着许多与高等数学相通的数学思想方法。因此,根据《课标》倡导的精神,在小学数学教学中很有必要有目的、有意识地向学生渗透一些基本的数学思想方法。下面就自己十几年的课堂教学简单谈谈“转化”思想在小学数学教学中的应用。
转化思想是把一个实际问题通过某种转化、归结为一个数学问题,把一个较复杂的问题转化、归结为一个较简单的问题。也就是说,转化方法的基本思想是在解决数学问题时,将待解决的问题甲,通过某种转化过程,归结到一类已经解决或者比较容易解决的问题乙,然后通过问题乙还原解决复杂的问题甲。将有待解决或未解决的问题,转化为在已有知识的范围内可解决的问题,是解决数学问题的基本思路和途径之一,是一种重要的数学思想方法。转化是解决数学问题常用的思想方法。小学数学解题中,遇到一些数量关系复杂、隐蔽而难以解决的问题时,可通过转化,使生疏的问题熟悉化、抽象的问题具体化、复杂的问题简单化,从而顺利解决问
例谈小学数学转化思想的渗透
龙源期刊网 http://www.qikan.com.cn
例谈小学数学转化思想的渗透
作者:庄晶晶
来源:《广西教育·A版》2014年第02期
【关键词】转化思想 小学数学 渗透 【中图分类号】G 【文献标识码】A 【文章编号】0450-9889(2014)02A- 0032-01
转化思想是解决数学问题的根本思想。何为“转化思想”?就是通过观察、类比、联想等思维过程,将原问题转化为一个新问题的求解,达到解决原问题的目的。数学问题的解决都可以通过转化来实现,在小学数学教学中,教师要善于引导学生使用转化的思想方法,提高思维的灵活性,提高学生解决问题的能力。 一、在知识学习中善用类比,实现转化
类比方法通过对两个研究对象的比较,根据其相似点推理出未知对象的相似点,这是新旧知识转化过程中最有效的推理方法。教学时,适时运用类比方法进行转化,可使陌生的问题转化为熟悉的问题,有利于学生更好地掌握新知识,巩固旧知识。如,在教学人教版五年级数学上册《平行四边形的面积》时,笔者先引导学生将平行四边形与长方形做类比:如何将平行四边形转化为长方形?学生
小学数学思想方法有哪些
小学数学思想方法有哪些?
《课标》(修订稿)把“双基”改变“四基”,即改为关于数学的:基础知识、基本技能、基本思想、基本活动经验.
“基本思想”主要是指演绎和归纳,这应当是整个数学教学的主线,是最上位的思想. 演绎和归纳不是矛盾的,其教学也不是矛盾的,通过归纳来预测结果,然后通过演绎来验证结果.在具体的问题中,会涉及到数学抽象、数学模型、等量替换、数形结合等数学思想, 但最上位的思想还是演绎和归纳.之所以用“基本思想”而不用基本思想方法,就是要与换元法、递归法、配方法等具体的数学方法区别.每一个具体的方法可能是重要的,但它们是个案,不具有一般性.作为一种思想来掌握是不必要的,经过一段时间,学生很可能就忘却了.这里所说的思想,是大的思想,是希望学生领会之后能够终生受益的那种思想方法.
史宁中教授认为:演绎推理的主要功能在于验证结论,而不在于发现结论.我们缺少的是根据情况“预测结果”的能力;根据结果“探究成因”的能力.而这正是归纳推理的能力.
就方法而言,归纳推理十分庞杂,枚举法、归纳法、类比法、统计推断、因果分析,以及观察实验、比较分类、综合分析等均可被包容.与演绎推理相反,归纳推理是一种“从特殊到一般的推理”.
借助归纳推理可以培养学生“预测结果”和“
小学数学思想方法有哪些
小学数学思想方法有哪些?
《课标》(修订稿)把“双基”改变“四基”,即改为关于数学的:基础知识、基本技能、基本思想、基本活动经验.
“基本思想”主要是指演绎和归纳,这应当是整个数学教学的主线,是最上位的思想. 演绎和归纳不是矛盾的,其教学也不是矛盾的,通过归纳来预测结果,然后通过演绎来验证结果.在具体的问题中,会涉及到数学抽象、数学模型、等量替换、数形结合等数学思想, 但最上位的思想还是演绎和归纳.之所以用“基本思想”而不用基本思想方法,就是要与换元法、递归法、配方法等具体的数学方法区别.每一个具体的方法可能是重要的,但它们是个案,不具有一般性.作为一种思想来掌握是不必要的,经过一段时间,学生很可能就忘却了.这里所说的思想,是大的思想,是希望学生领会之后能够终生受益的那种思想方法.
史宁中教授认为:演绎推理的主要功能在于验证结论,而不在于发现结论.我们缺少的是根据情况“预测结果”的能力;根据结果“探究成因”的能力.而这正是归纳推理的能力.
就方法而言,归纳推理十分庞杂,枚举法、归纳法、类比法、统计推断、因果分析,以及观察实验、比较分类、综合分析等均可被包容.与演绎推理相反,归纳推理是一种“从特殊到一般的推理”.
借助归纳推理可以培养学生“预测结果”和“
在动手操作实践中感悟数学的转化思想
在动手操作实践中感悟数学的转化思想
竹岐中心小学 陈如国
【内容摘要】数学中转化思想是数学思想的核心,在教学中,要始终紧扣“转化”这根弦,通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、简单的问题,选择恰当的方法进行转化,把隐含在知识中的转化思想加以揭示和渗透,让学生感悟转化思想的作用,体会运用转化思想的乐趣,提高学生分析问题和解决问题的能力。
【关键词】 实践 感悟 转化 思想
数学的转化思想是学生认识事物、学习数学的基本依据,是学生数学素养的核心,是处理数学问题的指导思想和基本策略,是数学学习的灵魂。数学转化思想的感悟是在学生数学实践活动中积累的,在教学中渗透数学转化思想可以使学生自觉地将数学知识转化为数学能力,最终通过自身的学习转化为创造能力。
一、在动手操作实践中,感悟教材中所蕴涵的转化思想
在实际教学中,教师要挖掘教材中所蕴涵的转化思想,可以把学生感到生疏的问题转化成比较熟悉的问题,并利用已有的知识加以解决,促使其快速高效地学习新知,拓展学生的解题思路与策略,提高学生分析问题和解决问题的能力。
例如,新编人教版六年级数学下册《圆柱与圆锥》这一单元在学习完圆柱的体积计算之后,教材新编了一道“问题解决”的例题即
数学建模思想在小学数学教学中的应用
龙源期刊网 http://www.qikan.com.cn
数学建模思想在小学数学教学中的应用
作者:王海燕
来源:《课程教育研究》2018年第17期
【摘要】小学数学与其他课程相比,本身有着逻辑性、思维性等要求,因此对小学生要求较高。建模思想作为一种重要的数学思想,在实际中有着广泛应用。本文中详细分析小学数学教学中数学建模思想的应用。
【关键词】小学数学 建模思想 应用分析
【中图分类号】G623.5 【文献标识码】A 【文章编号】2095-3089(2018)17-0131-02 小学课堂教学中数学扮演着重要角色,借助建模思想可以让教师更加合理的讲解数学理论,同时也能让学生更加容易的接收数学知识,因此在小学数学教学中引入建模思想有着重要意义。
1.小学数学教学分析
虽然素质教育提出很多年,但传统应试教育的影响犹在,部分学生数学学习中不善于总结数学学习技巧与规律,普遍存在死记硬背的情况。大部分小学生数学学习依赖于教师灌输,自身很少主动思考问题,不利于培养学生逻辑思维能力。如加减乘除运算学习中,各类公式转换复杂,如果不进行深入思考,单纯依靠死记硬背
小学数学教学中渗透模型思想的策略
楚雄师范学院毕业论文(设计)
小学数学教学中渗透模型思想的策略
罗玉珍
(楚雄师范学院 2013级小学教育专业1班 20130126136)
摘要:模型思想是近年来新提出的一个理念,它主要就是要让学生把生活实际和数学联系起
来。模型思想便是将现实中的问题用数的形式表示出来且用数学的方式进行解答。小学是培养孩子模型思想的第一个阶段,所以教师在培养过程中要使用适当的方式和策略。本文主要就在小学数学课堂中怎样培养模型思想的策略做了简单的论述。对相关的概念做了叙述,对小学课本中重要的模型思想做了简述。对教师处理含有模型思想的案例做了简单解析。
关键词:小学数学;模型思想;培养;策略
I
楚雄师范学院毕业论文(设计)
The strategy of infiltrating model thinking in primary
school mathematics teaching
Abstract:The idea of model is a new concept put forward in recent years, it is mainly to let the
students to the actual life and mathemati
化归与转化的思想
第7讲 化归与转化的思想在解题中的应用
一、知识整合
1.解决数学问题时,常遇到一些问题直接求解较为困难,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换,将原问题转化为一个新问题(相对来说,对自己较熟悉的问题),通过新问题的求解,达到解决原问题的目的,这一思想方法我们称之为“化归与转化的思想方法”。
2.化归与转化思想的实质是揭示联系,实现转化。除极简单的数学问题外,每个数学问题的解决都是通过转化为已知的问题实现的。从这个意义上讲,解决数学问题就是从未知向已知转化的过程。化归与转化的思想是解决数学问题的根本思想,解题的过程实际上就是一步步转化的过程。数学中的转化比比皆是,如未知向已知转化,复杂问题向简单问题转化,新知识向旧知识的转化,命题之间的转化,数与形的转化,空间向平面的转化,高维向低维转化,多元向一元转化,高次向低次转化,超越式向代数式的转化,函数与方程的转化等,都是转化思想的体现。
3.转化有等价转化和非等价转化。等价转化前后是充要条件,所以尽可能使转化具有等价性;在不得已的情况下,进行不等价转化,应附加限制条件,以保持等价性,或对所得结论进行必要的验证。
4.化归与转化应遵循的基本原则:
(1)熟悉化原则: