一元二次方程根的判别式说课稿

“一元二次方程根的判别式说课稿”相关的资料有哪些?“一元二次方程根的判别式说课稿”相关的范文有哪些?怎么写?下面是小编为您精心整理的“一元二次方程根的判别式说课稿”相关范文大全或资料大全,欢迎大家分享。

一元二次方程根的判别式

标签:文库时间:2024-11-05
【bwwdw.com - 博文网】

一元二次方程根的判别式

(第1课时)

【目标导航】

通过本课的学习,让学生在知识上了解掌握根的判别式.在能力上在求不解方程能判定一元二次方程根的情况;根据根的情况,探求所需的条件.

【预习引领】

解下列一元二次方程.

(1)x2-1=0 (2)x2 -2x =-1

(3)(x+1)2-24=0 (4)x2 +2x+2=0

问题:(1)为什么会出现无解?

(2) 回顾用配方法解方程ax2+bx+c=0(a ≠ 0)的过程.

【要点梳理】

1.一元二次方程ax2+bx+c=0(a ≠ 0)的根的判别式是2-4ac.

2.判别一元二次方程根的情况:

(1)当b2-4ac>0时,___________ _____;

(2)当b2-4ac=0时,__________________;

(3)当b2-4ac<0时,________ _______.

例1 不解方程,判别下列方程的根的情况:

(1)2x2+3x-4=0;

(2)16y2+9=24y;

(3)5(x2+1)-7x=0.

【课堂操练】

不解方程,判别下列方程根的情况:

(1)3x2+4x-2=0;

(2)2y2+5=6y;

(3)4p(p-1)-3=0;

(4)(x-2)2+2(x-2)-8=0;

(5

2

专题三 一元二次方程根的判别式

标签:文库时间:2024-11-05
【bwwdw.com - 博文网】

专题三 一元二次方程根的判别式[学生用书B14]__

(教材P39作业题第5题)

已知一元二次方程ax2+bx+c=0的系数满足ac<0,判别方程根的情况,并说明理由.

解:Δ=b2-4ac>0,

所以原方程有两个不相等的实数根.

【思想方法】 一元二次方程根的判别式可以用来判断根的情况,也可以根据一元二次方程根的情况,确定方程中的未知系数.常常有以下的应用.

一 判断一元二次方程根的情况

[2013·福州]下列一元二次方程有两个相等实数根的是 ( C )

A.x2+3=0 B.x2+2x=0 C.(x+1)2=0 D.(x+3)(x-1)=0

[2013·潍坊]已知关于x的方程kx2+(1-k)x-1=0,下列说法正确

的是

( C )

A.当k=0时,方程无解 B.当k=1时,方程有一个实数解

C.当k=-1时,方程有两个相等的实数解 D.当k≠0时,方程总有两个不相等的实数解

[2013·滨州]对于任意实数k,关于x的方程x2-2(k+1)x-k2+2k

-1=0的根的情况为

( C )

A.有两个相等的实数根 B.没有实数根

C.有两个不相等的实数根 D.无法确定

[2012·孝感]已知关于x的一元二次方程x2+(m+3)x+m+1=0.

一元二次方程根的判别式根与系数之间的关系练习题

标签:文库时间:2024-11-05
【bwwdw.com - 博文网】

一元二次方程根的判别式、 根与系数的关系练习题

1、方程kx2?3x?2?0有两个相等的实数根,则

k 。

2、若关于x的方程kx2?4x?3?0有实数根,则k的非负整数值是 。

3、关于x的方程mx2?2?3m?1?x?9m?1?0有

两个实数根,则m的范围是 。

4、已知k>0且方程3kx2?12x?k??1有两个相等的实数根,则k= 。

5、当 k

不小于?14时,方程

?k?2?x2??2k?1?x?k?0根的情况是 。

6

x

?m?2?x2?2?m?1?x?m?0只有一个实数根,那么

方程mx2??m?2?x??4?m??0的根的情况

是 。

7、如果关于x的方程mx2?2?m?2?x?m?5?0没有实数根,那么关于x的方程?m?5?x2?2?m?2?x?m?0的

是 。

8、如果方程2x2?mx?4?0的两根为x1,x2,且

1x?1?2,求实数 m的值。 1x2

9、已知方程x2??2k?1?x?k2?2?0的两实根

的平方和等于11,求k的值。

10、m取什么值时,方程?m?2?x2?2x?1?0有

4一元二次方程的根的判别式及根与系数的关系(名师总结)

标签:文库时间:2024-11-05
【bwwdw.com - 博文网】

一元二次方程的根的判别式及根与系数的关系

【知识点1】一元二次方程的根的判别式

概念:一元二次方程ax2+bx+c=0 (a≠0)的根的判别式为2=b2-4ac 一元二次方程ax+bx+c=0 (a≠0)的根的情况是:

①当△>0时,有两个不相等的实数根。 ②当△=0时,有两个相等的实数根。 ③当△<0时,没有实数根 注:当△≧0时,方程有实数根。

【例1】已知a、b、c分别是三角形的三边,则方程(a + b)x + 2cx + (a + b)=0的根的情况是( ) A. 没有实数根

B.可能有且只有一个实数根 D.有两个不相等的实数根

有两个不相等的实数根,那么的取值范围是( )

C.<

D.

2

2

C.有两个相等的实数根

【例2】如果关于x的一元二次方程A.>

B >

【例3】已知关于的一元二次方程

2

有两个不相同的实数根,则的取值范围是

【例4】.已知关于x的二次方程(1 2k)x 2kx 1 0有实数根,则k的取值范围是。 【例5】已知a,b是关于x的方程x (2k 1)x k(k 1) 0的两个实数根,则a b的最小值是【例6】关于x的一元二次方程(a b)x2 bx

2

22

a c

0有两个相等的实数根,那么以a、b、c为三边的三角形是

初三总复习《一元二次方程根的判别式及根与系数关系》

标签:文库时间:2024-11-05
【bwwdw.com - 博文网】

初三第一轮复习课之《一元二次方程根的判别式及根与系数关系》

执教:阳光学校 吴春丽

一、 教学目标

1、 通过复习,学生重新认知知识的由来,熟练掌握一元二次方程根的判别式、

根与系数的关系。

2、 学生能灵活运用知识,解答基本基础题,及一些简单综合题。

3、 培养学生数学的严谨性及阅读审题能力,进一步提高学生的解题能力及思维

的严密性。

二、 教学重点与难点

重点:认清知识的本质,灵活运用这两个知识。

难点:认真审题,分析题意,正确选择解决问题的途径。

三、 教学方法:启发、讨论

四、 教学过程

(一) 课前基础训练

1、不解方程,判断下列一元二次方程的根的情况:

222(1)x+3x+3=0; (2)x-4x-3=0; (3)4x-4x+1=0

2、不解方程,请说出下列一元二次方程的两根的和与两根的积:

22(1)x-4x-3=0; (2)4x-4x+1=0;

通过很简单的基本训练,教师对学生今天所要复习的内容的认知情况做一个了解。

(二)课本回顾,知识重现

提问1:同学们能否告知老师刚才在做练习时,你用了什么数学知识吗?(生答) 提问2:有没有同学能够告诉大家,这两个知识又是如何研究得到的呢? 揭示课题

重现根的判别式以及根与系数关系的由来(课本内容)

22一元

根与判别式含参数一元二次方程专项练习60题(有答案)ok

标签:文库时间:2024-11-05
【bwwdw.com - 博文网】

根与判别式含参数一元二次方程专项练习60题(有答案)ok

一元二次方程专项练习60题

1.已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2.

(1)求实数m的取值范围;

(2)当时,求m的值.

2.关于x的方程2x2﹣(a2﹣4)x﹣a+1=0,

(1)若方程的一根为0,求实数a的值;

(2)若方程的两根互为相反数,求实数a的值.

3.已知关于x的方程x2﹣(k+1)x+k+2=0的两个实数根分别为x1和x2,且x12+x22=6,求k的值?

4.已知关于x的方程kx2+2(k+1)x﹣3=0.

(1)请你为k选取一个合适的整数,使方程有两个有理根,并求出这两个根;

(2)若k满足不等式16k+3>0,试讨论方程实数根的情况.

5.已知方程2(m+1)x2+4mx+3m=2,根据下列条件之一求m的值.

(1)方程有两个相等的实数根;

(2)方程有两个相反的实数根;

(3)方程的一个根为0.

6.已知α,β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足+=﹣1,求m的值.

第1 页共1 页

根与判别式含参数一元二次方程专项练习60题(有答案)ok

7.已知x1,x2是关于x的一元二次方程x2﹣(2m+3)x+m2=0的两

一元二次方程的概念说课稿

标签:文库时间:2024-11-05
【bwwdw.com - 博文网】

一元二次方程的概念说课稿

一、教材分析: 1、教材的地位和作用

一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。通过一元二次方程的学习,可以对已学过实数、一元一次方程、因式分解、二次根式等知识加以巩固,同时又是今后学习可化为一元二次方程的其它高元方程、一元二次不等式、二次函数等知识的基础。此外,学习一元二次方程对其它学科有重要意义。本节课是一元二次方程的概念,是通过丰富的实例,让学生建立一元二次方程,并通过观察归

纳出一元二次方程的概念。

2、 教学目标

根据大纲的要求、本节教材的内容和学生的好奇心、求知欲及已有的知识经验,本节课的三维目标主要体

现在:

知识与能力目标: 要求学生会根据具体问题列出一元二次方程,体会方程的模型思想,培养学生归纳、分

析的能力。

过程与方法目标:引导学生分析实际问题中的数量关系,回顾一元一次方程的概念,组织学生讨论,让学

生自己抽象出一元二次方程的概念 。

情感、态度与价值观:通过数学建模的分析、思考过程,激发学生学数学的兴趣,体会做数学的快乐,培

养用数学的意识。 3、 教学重点与难点

要运用一元二次方程解决生活中的实际问题,首先必须了解一元二次方程的概念,而概念的教学又要从大量的实例出发 。所

一元二次方程的概念说课稿

标签:文库时间:2024-11-05
【bwwdw.com - 博文网】

一元二次方程的概念说课稿

一、教材分析: 1、教材的地位和作用

一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。通过一元二次方程的学习,可以对已学过实数、一元一次方程、因式分解、二次根式等知识加以巩固,同时又是今后学习可化为一元二次方程的其它高元方程、一元二次不等式、二次函数等知识的基础。此外,学习一元二次方程对其它学科有重要意义。本节课是一元二次方程的概念,是通过丰富的实例,让学生建立一元二次方程,并通过观察归

纳出一元二次方程的概念。

2、 教学目标

根据大纲的要求、本节教材的内容和学生的好奇心、求知欲及已有的知识经验,本节课的三维目标主要体

现在:

知识与能力目标: 要求学生会根据具体问题列出一元二次方程,体会方程的模型思想,培养学生归纳、分

析的能力。

过程与方法目标:引导学生分析实际问题中的数量关系,回顾一元一次方程的概念,组织学生讨论,让学

生自己抽象出一元二次方程的概念 。

情感、态度与价值观:通过数学建模的分析、思考过程,激发学生学数学的兴趣,体会做数学的快乐,培

养用数学的意识。 3、 教学重点与难点

要运用一元二次方程解决生活中的实际问题,首先必须了解一元二次方程的概念,而概念的教学又要从大量的实例出发 。所

一元二次方程的概念说课稿

标签:文库时间:2024-11-05
【bwwdw.com - 博文网】

一元二次方程的概念说课稿

一、教材分析: 1、教材的地位和作用

一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。通过一元二次方程的学习,可以对已学过实数、一元一次方程、因式分解、二次根式等知识加以巩固,同时又是今后学习可化为一元二次方程的其它高元方程、一元二次不等式、二次函数等知识的基础。此外,学习一元二次方程对其它学科有重要意义。本节课是一元二次方程的概念,是通过丰富的实例,让学生建立一元二次方程,并通过观察归

纳出一元二次方程的概念。

2、 教学目标

根据大纲的要求、本节教材的内容和学生的好奇心、求知欲及已有的知识经验,本节课的三维目标主要体

现在:

知识与能力目标: 要求学生会根据具体问题列出一元二次方程,体会方程的模型思想,培养学生归纳、分

析的能力。

过程与方法目标:引导学生分析实际问题中的数量关系,回顾一元一次方程的概念,组织学生讨论,让学

生自己抽象出一元二次方程的概念 。

情感、态度与价值观:通过数学建模的分析、思考过程,激发学生学数学的兴趣,体会做数学的快乐,培

养用数学的意识。 3、 教学重点与难点

要运用一元二次方程解决生活中的实际问题,首先必须了解一元二次方程的概念,而概念的教学又要从大量的实例出发 。所

2013年中考攻略专题3:一元二次方程根的判别式应用探讨

标签:文库时间:2024-11-05
【bwwdw.com - 博文网】

一元二次方程根的判别式应用探讨

一元二次方程,就是只有一个未知数且未知数最高次数为2的整式方程,其一般形式为ax+bx+c=0(a≠0)。在系数a≠0的情况下,Δ=b-4ac>0时,方程有2个不相等的实数根;Δ=b-4ac =0时,方程有两个相等的实数根;Δ=b-4ac <0时,方程无实数根。反之,若方程有2个不相等的实数根,则Δ=b-4ac>0;若方程有两个相等的实数根,则Δ=b-4ac =0;若无实数根,则Δ=b-4ac

根的判别式b-4ac的使用条件,是在一元二次方程中,而非别的方程中,因此,解题过程中要注意隐含条件a≠0。使用判别式之前一定要先把方程变化为一般形式,以便正确找出a、b、c的值。

一元二次方程根的判别式在初中数学中有着广泛的应用,也是中考必考内容,并占有一定的份量。将其应用归纳为直接应用和综合应用两方面,直接应用包括①不解一元二次方程,判断(证明)根的情况、②根据方程根的情况,确定待定系数的取值范围、③限制一元二次方程的根与系数关系的应用;综合应用包括④判断二次三项式是完全平方式时的待定系数、⑤判断双曲线与直线的公共点个数、⑥判断抛物线与直线(含x轴)的公共点个数。下面通过近年全国各地中考的实例探讨其应用。

2

2

2

2

2

2

2

2

2

一.不解一元二次方程,判断(证明)根的情况:

2例1:(20