利用仰俯角解直角三角形教案

“利用仰俯角解直角三角形教案”相关的资料有哪些?“利用仰俯角解直角三角形教案”相关的范文有哪些?怎么写?下面是小编为您精心整理的“利用仰俯角解直角三角形教案”相关范文大全或资料大全,欢迎大家分享。

直角三角形教案

标签:文库时间:2025-01-15
【bwwdw.com - 博文网】

教 学 设 计

月 日 课题 教 学目 标 直角三角形 课时 2 课型 新授 知识技能: 了解勾股定理及其逆定理的证明方法、逆命题的概念。 过程方法: 经历用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感, 发展抽象思维. 情感与价值观: 在数学活动中,获得成功的体验,锻炼克服困难的意志,建立自信心. 教学重点 1.了解勾股定理及其逆定理的证明方法. 2.结合具体例子了解逆命题的概念,识别两个互逆命题.知道原命题成立,其逆命题不一定成立. 教学难点 1.勾股定理及其逆定理的证明方法. 2.对不是“如果??那么??”形式的逆命题的叙述. 教学方法 引导、探索法 重点难点分析 及 突破措 施 教具准 备 板书设 计 投影片 §1.2.1 直角三角形(一) 1.勾股定理及其逆定理利用公理及由其推导出的定理的证明方法. 2.互逆命题和互逆定理 § 1.2.2 直角三角形(二) 1.质疑: 问题:(1)两边及其中一边的对角对应相等的两个三角形全

解直角三角形的应用(仰角和俯角问题)

标签:文库时间:2025-01-15
【bwwdw.com - 博文网】

解直角三角形应用(一)南雅中学 范韵

课堂引入每周一清晨,学校的全体师生都要举行升旗仪式 。可是我们经常发现,在国歌声中,旗手升旗的速 度有快有慢,很难做到与音乐的节奏同步。现在我 们学校准备投资换一根电动旗杆。请你帮忙计算国 旗上升的速度,让国旗上升的速度与音乐同步。

利用三角形相似可以解决一些不能直接测量的物体的 除了用相似,还可以用其他方法来测量 长度的问题 这些不能直接测量的物体的长度吗?

探究1:如图,小明发现了另外一个利用解直角三角形,测量操场上旗杆高度的方法,离旗杆底部10米远 处,目测旗杆的顶部,仰角为30度,并已知目高为 1.65米.然后他很快就算出旗杆的高度了。 A 你能将实际问题归结为数学问题吗?

?BC

30°1.65米

10米

ED

解:由题意得,在Rt△ABE中

练习1:如图,小兰发现了另外一个测量操场上旗杆高度的方法,她把测角仪搬到教学楼的三楼窗口处,测得旗杆 的顶部仰角为45°,测得旗杆底部俯角为30°,教学楼离 旗杆底部200米,请你帮忙计算出旗杆的高度。

探究2:如图,小兰发现因为刚下过雨旗杆旁边有一滩水,不太方便测自己离旗杆得距离,她在A处测得旗杆的顶部 仰角为45°,然后后退10米测

直角三角形教案

标签:文库时间:2025-01-15
【bwwdw.com - 博文网】

教 学 设 计

月 日 课题 教 学目 标 直角三角形 课时 2 课型 新授 知识技能: 了解勾股定理及其逆定理的证明方法、逆命题的概念。 过程方法: 经历用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感, 发展抽象思维. 情感与价值观: 在数学活动中,获得成功的体验,锻炼克服困难的意志,建立自信心. 教学重点 1.了解勾股定理及其逆定理的证明方法. 2.结合具体例子了解逆命题的概念,识别两个互逆命题.知道原命题成立,其逆命题不一定成立. 教学难点 1.勾股定理及其逆定理的证明方法. 2.对不是“如果??那么??”形式的逆命题的叙述. 教学方法 引导、探索法 重点难点分析 及 突破措 施 教具准 备 板书设 计 投影片 §1.2.1 直角三角形(一) 1.勾股定理及其逆定理利用公理及由其推导出的定理的证明方法. 2.互逆命题和互逆定理 § 1.2.2 直角三角形(二) 1.质疑: 问题:(1)两边及其中一边的对角对应相等的两个三角形全

直角三角形教案

标签:文库时间:2025-01-15
【bwwdw.com - 博文网】

教 学 设 计

月 日 课题 教 学目 标 直角三角形 课时 2 课型 新授 知识技能: 了解勾股定理及其逆定理的证明方法、逆命题的概念。 过程方法: 经历用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感, 发展抽象思维. 情感与价值观: 在数学活动中,获得成功的体验,锻炼克服困难的意志,建立自信心. 教学重点 1.了解勾股定理及其逆定理的证明方法. 2.结合具体例子了解逆命题的概念,识别两个互逆命题.知道原命题成立,其逆命题不一定成立. 教学难点 1.勾股定理及其逆定理的证明方法. 2.对不是“如果??那么??”形式的逆命题的叙述. 教学方法 引导、探索法 重点难点分析 及 突破措 施 教具准 备 板书设 计 投影片 §1.2.1 直角三角形(一) 1.勾股定理及其逆定理利用公理及由其推导出的定理的证明方法. 2.互逆命题和互逆定理 § 1.2.2 直角三角形(二) 1.质疑: 问题:(1)两边及其中一边的对角对应相等的两个三角形全

解直角三角形的应用

标签:文库时间:2025-01-15
【bwwdw.com - 博文网】

专题复习:解直角三角形的应用

1、(2014泸州)海中两个灯塔A、B,其中B位于A的正东方向上,渔船跟踪鱼群由西向东航行,在点C处测得灯塔A在西北方向上,灯塔B在北偏东30°方向上,渔船不改变航向继续向东航行30海里到达点D,这是测得灯塔A在北偏西60°方向上,求灯塔A、B间的距离.(计算结果用根号表示,不取近似值) ADCB

2、(2013泸州)如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30?,在A、C之间选择一点B (A、B、C三点在同一直线上),用测角仪测得塔顶D的仰角为75?,且AB间距离为40m. (1)求点B到AD的距离;

(2)求塔高CD(结果用根号表示)。 D 30°75°A BC

3、(2011?泸州)如图,一艘船以每小时60海里的速度自A向正北方向航行,船在A处时,灯塔S在船的北偏东30°,航行1小时后到B处,此时灯塔S在船的北偏东75°,(运算结果保留根号) (1)求船在B处时与灯塔S的距离;

(2)若船从B处继续向正北方向航行,问经过多长时间船与灯塔S的距离最近.

4、(2013广安)如图9,广安市防洪指挥部发现渠江

《解直角三角形及应用一》

标签:文库时间:2025-01-15
【bwwdw.com - 博文网】

《解直角三角形及应用》练习一(2015.7.10)

1.(2014?滨州)在Rt△ACB中,∠C=90°,AB=10,sinA=,cosA=,tanA=,则BC的长为( ) 6 A.7.5 B. 8 C. 12.5 D. 2.(2014?连云港)如图,若△ABC和△DEF的面积分别为S1、S2,则( ) A.B. C. D. S1=S2 S1=S2 S1=S2 S1=S2 3.(2012?杭州)如图,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则( ) A.点B到AO的距离为sin54° B. 点B到AO的距离为tan36° 点A到OC的距离为sin36°sin54° C.D. 点A到OC的距离为cos36°sin54° 4.(2011?淄博)一副三角板按图1所示的位置摆放.将△DEF绕点A(F)逆时针旋转60°后(图2),测得CG=10cm,则两个三角形重叠(阴影)部分的面积为( ) 22 A.B. (25+25)cm C. 75cm 2D. 2(25+)cm (25+)cm 5.(2011?临沂)如图,△ABC中,cosB= A. 12 B. ,sinC=,AC=5,

解直角三角形练习题

标签:文库时间:2025-01-15
【bwwdw.com - 博文网】

解直角三角形

1、(9分2013年19题)我国南水北调中线工程的起点是丹江口水库,按照工程计划,需对原水库大坝进行混凝土培厚加高,使坝高由原来的162米增加到176.6米,以抬高蓄水位,如图是某一段坝体加高工程的截面示意图,其中原坝体的高为BE,背水坡坡角∠BAC=68°。新坝体的高为DE,背水坡坡角∠DCE=60°。求工程完工后背水坡底端水平方向增加的宽度AC(结果精确到0.1米,参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.50,3=1.73).

2、(9分)(2014?河南19题)在中俄“海上联合﹣2014”反潜演习中,我军舰A测得潜艇C的俯角为30°,位于军舰A正上方1000米的反潜直升机B测得潜艇C的俯角为68°,试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数,参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5,1.7)

3、(9分2015年20题)如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°.若坡角∠FAE=30°,求大树的

《解直角三角形的应用》教案1

标签:文库时间:2025-01-15
【bwwdw.com - 博文网】

4.4解直角三角形的应用 (1)

(一)教学三维目标 (一)知识目标

使学生会把实际问题转化为解直角三角形问题,从而会把实际问题转化为数学问题来解决. (二)能力目标

逐步培养学生分析问题、解决问题的能力. (三)情感目标

渗透数学来源于实践又反过来作用于实践的观点,培养学生用数学的意识. 二、教学重点、难点

1.重点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形元素之间的关系,从而利用所学知识把实际问题解决.

2.难点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而利用所学知识把实际问题解决. 三、教学过程 1.导入新课

上节课我们解决的实际问题是应用正弦及余弦解直角三角形,在实际问题中有时还经常应用正切和余切来解直角三角形,从而使问题得到解决. 2.例题分析

例1.如图6-21,厂房屋顶人字架(等腰三角形)的跨度为10米,∠A-26°,

求中柱BC(C为底边中点)和上弦AB的长(精确到0.01米).

分析:上图是本题的示意图,同学们对照图形,根据题意思考题目中的每句话对应图中的哪个角或边,本题已知什么,求什么?

由题意知,△ABC为直角三角形,∠ACB=90°,∠A=26°,AC=5米,可利用解

《解直角三角形的应用》教案1

标签:文库时间:2025-01-15
【bwwdw.com - 博文网】

4.4解直角三角形的应用 (1)

(一)教学三维目标 (一)知识目标

使学生会把实际问题转化为解直角三角形问题,从而会把实际问题转化为数学问题来解决. (二)能力目标

逐步培养学生分析问题、解决问题的能力. (三)情感目标

渗透数学来源于实践又反过来作用于实践的观点,培养学生用数学的意识. 二、教学重点、难点

1.重点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形元素之间的关系,从而利用所学知识把实际问题解决.

2.难点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而利用所学知识把实际问题解决. 三、教学过程 1.导入新课

上节课我们解决的实际问题是应用正弦及余弦解直角三角形,在实际问题中有时还经常应用正切和余切来解直角三角形,从而使问题得到解决. 2.例题分析

例1.如图6-21,厂房屋顶人字架(等腰三角形)的跨度为10米,∠A-26°,

求中柱BC(C为底边中点)和上弦AB的长(精确到0.01米).

分析:上图是本题的示意图,同学们对照图形,根据题意思考题目中的每句话对应图中的哪个角或边,本题已知什么,求什么?

由题意知,△ABC为直角三角形,∠ACB=90°,∠A=26°,AC=5米,可利用解

解直角三角形练习题

标签:文库时间:2025-01-15
【bwwdw.com - 博文网】

解直角三角形

1、(9分2013年19题)我国南水北调中线工程的起点是丹江口水库,按照工程计划,需对原水库大坝进行混凝土培厚加高,使坝高由原来的162米增加到176.6米,以抬高蓄水位,如图是某一段坝体加高工程的截面示意图,其中原坝体的高为BE,背水坡坡角∠BAC=68°。新坝体的高为DE,背水坡坡角∠DCE=60°。求工程完工后背水坡底端水平方向增加的宽度AC(结果精确到0.1米,参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.50,3=1.73).

2、(9分)(2014?河南19题)在中俄“海上联合﹣2014”反潜演习中,我军舰A测得潜艇C的俯角为30°,位于军舰A正上方1000米的反潜直升机B测得潜艇C的俯角为68°,试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数,参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5,1.7)

3、(9分2015年20题)如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°.若坡角∠FAE=30°,求大树的