必修一三角函数公式
“必修一三角函数公式”相关的资料有哪些?“必修一三角函数公式”相关的范文有哪些?怎么写?下面是小编为您精心整理的“必修一三角函数公式”相关范文大全或资料大全,欢迎大家分享。
高一三角函数诱导公式练习题
三角函数的诱导公式1
一、选择题
1.如果|cosx|=cos(x+π),则x的取值集合是( ) A.-C.
πππ3π
+2kπ≤x≤+2kπ B.-+2kπ≤x≤+2kπ 2222
π3π+2kπ≤x≤+2kπ D.(2k+1)π≤x≤2(k+1)π(以上k∈Z) 2219π
)的值是( ) 6
2.sin(-A.
1 2
B.-
1 2
C.
2
D.-
2
3.下列三角函数: ①sin(nπ+
4ππππ
);②cos(2nπ+);③sin(2nπ+);④cos[(2n+1)π-]; 3636
π
](n∈Z). 3
⑤sin[(2n+1)π-其中函数值与sinA.①② C.②③⑤
π
的值相同的是( ) 3
B.①③④
D.①③⑤
4.若cos(π+α)=-A.-C.-
3 2
π3π,且α∈(-,0),则tan(+α)的值为( ) 522
D.
B.6
2
6 3
5.设A、B、C是三角形的三个内角,下列关系恒成立的是( ) A.cos(A+B)=cosC C.tan(A+B)=tanC 6.函数f(x)=cosA.{-1,-C.{-1,-二、填空题
7.若α是第三象限角,则 2sin(π )cos(π )=_________. 8.sin21°+sin22
高一三角函数诱导公式练习题
三角函数的诱导公式1
一、选择题
1.如果|cosx|=cos(x+π),则x的取值集合是( ) A.-C.
πππ3π
+2kπ≤x≤+2kπ B.-+2kπ≤x≤+2kπ 2222
π3π+2kπ≤x≤+2kπ D.(2k+1)π≤x≤2(k+1)π(以上k∈Z) 2219π
)的值是( ) 6
2.sin(-A.
1 2
B.-
1 2
C.
2
D.-
2
3.下列三角函数: ①sin(nπ+
4ππππ
);②cos(2nπ+);③sin(2nπ+);④cos[(2n+1)π-]; 3636
π
](n∈Z). 3
⑤sin[(2n+1)π-其中函数值与sinA.①② C.②③⑤
π
的值相同的是( ) 3
B.①③④
D.①③⑤
4.若cos(π+α)=-A.-C.-
3 2
π3π,且α∈(-,0),则tan(+α)的值为( ) 522
D.
B.6
2
6 3
5.设A、B、C是三角形的三个内角,下列关系恒成立的是( ) A.cos(A+B)=cosC C.tan(A+B)=tanC 6.函数f(x)=cosA.{-1,-C.{-1,-二、填空题
7.若α是第三象限角,则 2sin(π )cos(π )=_________. 8.sin21°+sin22
高一三角函数诱导公式练习题精选
一、选择题
1.如果|cosx|=cos(x+π),则x的取值集合是( )
A.-C.
π2π2π2π23π2+2kπ≤x≤+2kπ B.-+2kπ≤x≤+2kπ
+2kπ≤x≤
19π63π2+2kπ D.(2k+1)π≤x≤2(k+1)π(以上k∈Z)
2.sin(-
A.
12)的值是( )
B.-
12 C.
32 D.-
32
3.下列三角函数:
①sin(nπ+
4π3);②cos(2nπ+
π3π6);③sin(2nπ+
π3);④cos[(2n+1)π-
π6];
⑤sin[(2n+1)π-其中函数值与sinA.①② C.②③⑤
π3](n∈Z).
的值相同的是( )
105B.①③④
D.①③⑤
π24.若cos(π+α)=-
A.-C.-
6362,且α∈(- D.
B.
6263,0),则tan(
3π2+α)的值为( )
5.设A、B、C是三角形的三个内角,下列关系恒成立的是( )
A.cos(A+B)=cosC C.tan(A+B)=tanC 6.函数f(x)=cos
A.{-1,-C.{-1,-
π412πx3
B.sin(A+B)=sinC D.sin
A?B2 =sin
C2
(x∈Z)的值域为( )
12,
高一三角函数题型总结
三角函数题型总结
1.已知角A,B,C是锐角三角形的三个内角,则sinA>sinB是tanA>tanB的( )
A.充分非必要条件 B.必要非充分条件 C.充要条件 D.非充非必条件
2.将函数y=sin(2x+)图像向左平移个单位长度,再向上平移一个单位长度,所得图像的函
6
6
π
π
数解析式是
A.y=2cos2x B. .y=2sin2x C.y=1+sin(2x+3) D.y=cos2x
3.要得到函数y=3sin2x的图象,只需将函数y=3cos(2x+π/4)的图象 A.向左平移π/4个单位 B.向右平移π/4个单位 C.向左平移3π/8个单位 D.向右平移3π/8个单位
4.已知tanβ=,sin(α+β)=,且α,β∈(0,π),则sinα的值为 .
3
13
4
5
π
5.直线y=x与函数y=sinx有( )个交点; 直线y=x与函数y=2sinx有( )个交点。
41
6.下列命题正确的是:( )
A.函数y=sin(2x+)在区间(-,)内单调递增 B.函数y=cos4x?sin4x的最小正周期为2π
3
36
π
ππ
C.函数y= cos(x+)的图象关于点(,0)对称D.函数y=tan(x
三角函数三角函数的诱导公式
三角函数的诱导公式(第一课时)
(一)复习提问,引入新课 思考 如何求 cos150 ?150 y
30 想到150 的三角函数值与 30 角的三角函数值可能存在一定 x 的关系 为了使讨论具有一般性,我们来 研究任意角 的三角函数值的求 法.
O
(二)新课讲授由三角函数的定义我们可以知道:
终边相同的角的同一三角函数值相同sin ( 2k ) sin ( k Z) cos( 2k ) cos (k Z) tan( 2k ) tan (k Z)
(公式一)
我们来研究角 与 的三角函数值之间的关系 y
因为r=1,所以我们得到:y x sin ______, cos ______, P(x,y) -y x , sin( ) _____, cos( ) ____ x 由同角三角函数关系得 sin ( ) sin tan( ) tan cos( ) cos
M
O
P' (x, y)
sin( ) sin cos( ) cos tan( ) tan
(公式二)
思考 P '
高一三角同步练习3(三角函数定义)
高中数学必修四(角概念的推广\诱导公式\三角函数关系)
高一三角同步练习3(三角函数定义)
一.选择题
1、已知角α的终边过点P(-1,2),cosα的值为 ( ) A.-
55
255
52
B.- C. D.
2、α是第四象限角,则下列数值中一定是正值的是 ( ) A.sinα B.cosα C.tanα D.cotα
3、已知角α的终边过点P(4a,-3a)(a<0),则2sinα+cos α的值是 ( ) 22
A. B.- C.0 D.与a的取值有关
554、α是第二象限角,P(x, 5 ) 为其终边上一点,且cosα=
A.
4
244
x,则sinα的值为 ( )
(
)
B.
sinx
64
C.
24
D.- 是
5、函数y cosx的定义域是
2
A.(2k ,(2k 1) ),k Z C.[k
2
2
B.[2k ,(2k 1) ],k Z
,(k 1) ], k Z D.[2kπ,(2k+1)π],k Z
(
)
6、若θ是第三象限角,且cos
A.第一象限角 7、已知sinα=
A.
43
45
2
0,则
B.第二象限角 C.第三
三角函数公式大全
三角函数各类公式
Trigonometric
1.诱导公式
sin(-a) = - sin(a)
cos(-a) = cos(a)
sin(π/2 - a) = cos(a)
cos(π/2 - a) = sin(a)
sin(π/2 + a) = cos(a)
cos(π/2 + a) = - sin(a)
sin(π - a) = sin(a)
cos(π - a) = - cos(a)
sin(π + a) = - sin(a)
cos(π + a) = - cos(a)
2.两角和与差的三角函数
sin(a + b) = sin(a)cos(b) + cos(α)sin(b)
cos(a + b) = cos(a)cos(b) - sin(a)sin(b)
sin(a - b) = sin(a)cos(b) - cos(a)sin(b)
cos(a - b) = cos(a)cos(b) + sin(a)sin(b)
tan(a + b) = [tan(a) + tan(b)] / [1 - tan(a)tan(b)]
三角函数各类公式
tan(a - b) = [tan(a) - tan(b)] / [1 + tan(a)tan(b)]
3.和差化积公式
sin(a) + s
三角函数公式大全
三角函数公式大全
几个一定要掌握的角(其中还有120,135,150根据公式自行推出)
sin30°=1/2 sin45°=√2/2 sin60°=√3/2 cos30°=√3/2 cos45°=√2/2 cos60°=1/2 tan30°=√3/3 tan45°=1 tan60°=√3 cot30°=√3 cot45°=1 cot60°=√3/3
几个会有几率考到角度(这些是根据下面的公式推出来的)
sin15°=(√6-√2)/4 sin75°=(√6+√2)/4 cos15°=(√6+√2)/4
cos75°=(√6-√2)/4(这四个可根据sin(45°±30°)=sin45°cos30°±cos45°sin30°得出) sin18°=(√5-1)/4 (这个值在高中竞赛和自招中会比较有用,即黄金分割的一半)
正弦定理:在△ABC中,a / sin A = b / sin B = c / sin C = 2R (其中,R为△ABC的外接圆的半径。)
余弦定理:在△ABC中
三角函数公式总结
三角函数公式总结
一、三角函数基本知识
1. 几种终边在特殊位置时对应角的集合为
角的终边所在位置 角的集合 x轴正半轴 y轴正半轴 x轴负半轴 y轴负半轴 x轴 y轴 坐标轴 2.α、
??|??k?360?,k?Z? k?Z? ??|??k?360??90?,??|??k?360??180?,??|??k?360??270?,??|??k?180?,k?Z? k?Z? k?Z? ??|??k?180??90?,??|??k?90?,k?Z? k?Z? ?、2α之间的关系 2?终边在第一或第三象限;2α终边在第一或第二象限或y轴正半轴。 2?若α终边在第二象限则终边在第一或第三象限;2α终边在第三或第四象限或y轴负半轴。
2?若α终边在第三象限则终边在第二或第四象限;2α终边在第一或第二象限或y轴正半轴。
2?若α终边在第四象限则终边在第二或第四象限;2α终边在第三或第四象限或y轴负半轴。
2若α终边在第一象限则3. 三角函数基本关系式
(1)已知一点一角始边为x轴正半轴,终边上有一点P(x,y),设r?x2?y2,则
sin??yx2?y2,cos??xx2?y2,tan??y x(2)同角三角函数关系式
sin??cos??1
三角函数公式总结
三角函数公式总结
一、三角函数基本知识
1. 几种终边在特殊位置时对应角的集合为
角的终边所在位置 角的集合 x轴正半轴 y轴正半轴 x轴负半轴 y轴负半轴 x轴 y轴 坐标轴 2.α、
??|??k?360?,k?Z? k?Z? ??|??k?360??90?,??|??k?360??180?,??|??k?360??270?,??|??k?180?,k?Z? k?Z? k?Z? ??|??k?180??90?,??|??k?90?,k?Z? k?Z? ?、2α之间的关系 2?终边在第一或第三象限;2α终边在第一或第二象限或y轴正半轴。 2?若α终边在第二象限则终边在第一或第三象限;2α终边在第三或第四象限或y轴负半轴。
2?若α终边在第三象限则终边在第二或第四象限;2α终边在第一或第二象限或y轴正半轴。
2?若α终边在第四象限则终边在第二或第四象限;2α终边在第三或第四象限或y轴负半轴。
2若α终边在第一象限则3. 三角函数基本关系式
(1)已知一点一角始边为x轴正半轴,终边上有一点P(x,y),设r?x2?y2,则
sin??yx2?y2,cos??xx2?y2,tan??y x(2)同角三角函数关系式
sin??cos??1