线性方程组迭代收敛的条件
“线性方程组迭代收敛的条件”相关的资料有哪些?“线性方程组迭代收敛的条件”相关的范文有哪些?怎么写?下面是小编为您精心整理的“线性方程组迭代收敛的条件”相关范文大全或资料大全,欢迎大家分享。
解线性方程组的几种迭代算法
解线性方程组的几种迭代算法
内容摘要:
本文首先总结了分裂法解线性方程组的一些迭代算法,在此基础上分别通过改变系数矩阵A的分裂形式和对SSOR算法的改进提出了两种新的算法,并证明了这两种算法的收敛性.与其它方法相比,通过改变系数矩阵A的分裂形式得到的新算法具有更好的收敛性,改进的SSOR算法有了更快的收敛速度.最后通过数值实例验证了这两种算法在有些情况下确实可以更有效的解决问题.
关键词:
线性方程组 迭代法 算法 收敛速度
Several kinds of solving linear equations
iterative algorithm
Abstract:
In this paper, we firstly summarize some Iterative algorithms of Anti-secession law solution of linear equations. Based on these, two new algorithms are put forward by changing the fission form of coefficient matrix A and improving the alg
解线性方程组的几种迭代算法
解线性方程组的几种迭代算法
内容摘要:
本文首先总结了分裂法解线性方程组的一些迭代算法,在此基础上分别通过改变系数矩阵A的分裂形式和对SSOR算法的改进提出了两种新的算法,并证明了这两种算法的收敛性.与其它方法相比,通过改变系数矩阵A的分裂形式得到的新算法具有更好的收敛性,改进的SSOR算法有了更快的收敛速度.最后通过数值实例验证了这两种算法在有些情况下确实可以更有效的解决问题.
关键词:
线性方程组 迭代法 算法 收敛速度
Several kinds of solving linear equations
iterative algorithm
Abstract:
In this paper, we firstly summarize some Iterative algorithms of Anti-secession law solution of linear equations. Based on these, two new algorithms are put forward by changing the fission form of coefficient matrix A and improving the alg
第3章 线性方程组的迭代解法
用迭代法阶线性方程组
第4章 解线性方程组的迭代法直接法得到的解是理论上准确的,但是我们可以看得出,它们的计算量都是n3 数量级,存储量为n2量级,这在n比较小的时候还比较合适(n<400),但是对于现 在的很多实际问题,往往要我们求解很大的n的矩阵,而且这些矩阵往往是系数矩阵 就是这些矩阵含有大量的0元素。对于这类的矩阵,在用直接法时就会耗费大量的时 间和存储单元。因此我们有必要引入一类新的方法:迭代法。 迭代法具有的特点是速度快。与非线性方程的迭代方法一样,需要我们构造一 个等价的方程,从而构造一个收敛序列,序列的极限值就是方程组的根
用迭代法阶线性方程组
对方程组 如:令
Ax = b
做等价变换
x = Gx + g
A = M N ,则 Ax = b ( M N ) x = b Mx = b + Nx x = M 1 Nx + M 1b则,我们可以构造序列 若 同时:
x ( k +1) = G x ( k ) + g
x ( k ) → x * x* = G x * + g Ax* = b
x ( k +1) x* = Gx ( k ) Gx* = G ( x ( k ) x*) = = G k
数值分析_线性方程组迭代解法Hilbert矩阵
数值分析第二次上机实习报告
——线性方程组迭代解法
一、问题描述
设 Hn = [hij ] ∈ Rn×n 是 Hilbert 矩阵, 即
hij=
对n = 2,3,4,…15, 1 i+j 1
1 x ∈Rn×n,及bn=Hnx,用SOR迭代法和共轭梯度法来求解,并与直取=
1
接解法的结果做比较。
二、方法描述
1. SOR迭代法
记H = D – L – U,SOR法的分量形式可以写成向量形式
x(k+1)=(1 ω)x(k)+ωD 1(b+Lx(k+1)+Ux(k))
(D ωL)x(k+1)=[(1 ω)D+ωU]x(k)+ωb
整理成
x(k+1)=Lwx(k)+ω(D ωL) 1b
其中,Lw为SOR法的迭代矩阵:
Lw=(D ωL) 1[(1 ω)D+ωU]
这相当于方程组Hx=b的系数矩阵分裂为H = M – N,其中
=M
N=1ω1(D ωL)
ω[(1 ω)D+ωU]
由此得到等价方程组x = M-1Nx+M-1b,利用它构造迭代法。
2. 共轭梯度法
梯度法通常的做法是先任意给定一个初始向量,然后确定一个搜索的方向和搜索步长,如此循环直到找到极小值。共轭梯度法是从整体来寻找最佳的搜索方向。它的第一步是取负梯度方向作为搜索方
线性方程组的应用
线性方程组在现实中的应用
线性方程组在现实生活中的应用非常广泛的,不仅可以广泛地应用于工程学,计算机科学,物理学,数学,经济学,统计学,力学,信号与信号处理,通信,航空等学科和领域,同时也应用于理工类的后继课程,如电路、理论力学、计算机图形学、信号与系统、数字信号处理、系统动力学、自动控制原理等课程。 为了更好的运用这种理论,必须在解题过程中有意识地联系各种理论的运用条件,并根据相应的实际问题,通过适当变换所知,学会选择最有效的方法来进行解题,通过熟练地运用理论知识来解决数学得问题.
一、 线性方程组的表示
1.按照线性方程组的形式表示有三种 1)一般形式的表示
?a11x1?a12x2?...?a1nxn?b1??a21x1?a22x2?...?a2nxn?b2?...??ax?ax?...?ax?bn22nnnn?n11
2)向量形式:
x1?1?x2?2?...?xn?n??
3)矩阵形式的表示 :
AX??,A???1,?2,...,?n?X??x1,x2,...,xn?T
?0特别地,当?AX???0时,AX??称为齐次线性方程组,而当?时,
称为非齐次线性方程组
2.按照次数分类又可分为两类 1)齐次线性方程组
实验三:解线性方程组的迭代法
系部 学号 实验题目
数计系
专 业 姓 名
计算机科学与技术
日期 成绩
2010 年 12 月
实验三: 实验三:解线性方程组的迭代法
一.实验目的 1.熟练运用已学过的迭代法求解线性方程组, 包括雅克比迭代法、 迭代法和 SOR 迭代法。 G-S 2.加深对计算方法技巧,选择正确的计算方法来求解各种线性方程组。 3.培养使用电子计算机进行科学计算和解决问题的能力。 二.实验环境 VC++6.0 实验语言:c++ 三.实验内容 1.试用雅克比迭代法和高斯塞德尔迭代法求解如下的线性方程组,设置精度为 1.0e-6:
10 1 1 x1 6.2 1 10 2 x2 = 8.5 2 1 5 x 3.2 3 2. 用 w=1 及 w=1.25 的 SOR 方法求解如下的线性方程组, 设置精度为 0.5e-7(初值为(1,1,1))
4 3 0 x1 24 3 4 1 x2 = 30 0 1 4 x 24 3 四.实验公
线性代数 线性方程组
第四章 线性方程组
1. 设A 为n 阶方阵,若2)(-=n A R ,则0=AX 的基础解系所含向量的个数是( )。
)(A 0个(即不存在) )(B 1个 )(C 2个 )(D n 个
2.如果n 元非齐次线性方程组b AX =的系数矩阵A 的秩小于n ,则( )。
)(A 方程组有无穷多个解 )(B 方程组有惟一解
)(C 方程组无解 )(D 不能断定解的情况
3.设33)(?=ij a A 满足条件:(1)ij ij A a =(3,2,1,=j i ),其中ij A 是元素ij
a 的代数余子式;(2) 133-=a ;(3) ||1A =,则方程组
b AX =,
T b )1,0,0(=的解是( )。
)(A T )2,5,3( )(B T )3,2,1( )(C T )1,0,0(- )(D T )1,0,1(-
4.设A 为n 阶奇异方阵,A 中有一元素ij a 的代数余子式0≠ij A ,则齐次线性方程组0=AX 的基础解系所含向量个数为( )。
)(A i 个 )(B j 个 )(C 1个 )(D n 个
第6章 解线性方程组的迭代法
第6章
解线性方程组的迭代方法
6.1 迭代法的基本概念 6.2 雅可比迭代法与高斯-赛德尔迭代法
6.3 超松弛迭代法 6.4* 共轭迭代法
上页
下页
6.1 迭代法的基本概念6.1.1 引 言 对线性方程组 Ax=b, (1.1) 其中A为非奇异矩阵, 当A为低阶稠密矩阵时, 第5章 讨论的选主元消去法是有效的. 但对于大型稀疏矩 阵方程组(A的阶数n很大 104,但零元素较多), 利 用迭代法求解是合适的. 本章将介绍迭代法的一些基本理论及雅可比 迭代法,高斯-赛德尔迭代法,超松弛迭代法,而 超松弛迭代法应用很广泛。 下面举简例,以便了解迭代法的思想.上页 下页
例1 求解方程组
8 x1 3 x2 2 x3 20, 4 x1 11 x2 x3 33, 6 x 3 x 12 x 36. 2 3 1记为Ax=b,其中
(1.2)
x1 8 3 2 30 A 4 11 1 , x x2 , b 33 . x 6 3 12 36 3 此方程组的精确解是x*=(3,2,1)T
实验一线性方程组迭代法实验
实验一 线性方程组迭代法实验
一、
实验目的
1.掌握用迭代法求解线性方程组的基本思想和计算步骤;
2.能熟练地写出Jacobi迭代法的迭代格式的分量形式,并能比较它们各自的特点及误差估计;
3.理解迭代法的基本原理及特点,并掌握Jacobi迭代Gauss-Seidel迭代和SOR迭代格式的分量形式、矩阵形式及其各自的特点;
4.掌握Jacobi迭代Gauss-Seidel迭代和SOR迭代算法的MATLAB程序实现方法,及了解松弛因子对SOR迭代的影响;
5.用SOR迭代法求解线性方程组时,超松弛因子?的取值大小会对方程组的解造成影响,目的就是能够探索超松弛因子?怎样对解造成影响,通过这个实验我们可以了解?的大致取值范围。
二、
实验题目
1、迭代法的收敛速度
用迭代法分别对n=20,n=200解方程组Ax=b,其中
?4??????A?????????1315131513??134???...15134?15?15??15134?13?15???????11?3?5??4?13?1?34??n?n
(1)选取不同的初值x0和不同的右端向量b,给定迭代误差,用两种迭代法计算,观测得到的迭代向量并分析计算结果给出结论;
(2)取定初值x0
线性方程组解法的探究
线性方程组解法的探究
摘 要线性方程组源自于生活中一些未知元素的一系列特定的关系而转化成的
一组数据关系。对其进行求解可以解决一些方案的设计问题,例如给以新品的开发的多种原料的成分设计提供多种不同的配方。本文将以多种方法对线性方程组求解,并讲诉线性方程组的类别。
关键词
齐次线性方程组 非齐次线性方程组 克拉默(Cramer)法则
Gauss消去法 广义逆矩阵 减号逆矩阵 增广矩阵 矩阵的初等行变换 矩阵的秩
引言
克莱姆法则,又译克拉默法则(Cramer's Rule)是线性代数中一个关于求解线性方程组的定理。它适用于变量和方程数目相等的线性方程组,是瑞士数学家克莱姆(1704-1752)于1750年,在他的《线性代数分析导言》中发表的。高斯消元法(或译:高斯消去法),是线性代数中的一个算法,可用来为线性方程组求解,求出矩阵的秩,以及求出可逆方阵的逆矩阵。当用于一个矩阵时,高斯消元法会产生出一个“行梯阵式”。高斯消元法可以用在电脑中来解决数千条等式及未知数。不过,如果有过百万条等式时,这个算法会十分费时。一些极大的方程组通常会用迭代法来解决。亦有一些方法特地用来解决一些有特别排列的系数的方程组。广义逆的思想可追