微分
“微分”相关的资料有哪些?“微分”相关的范文有哪些?怎么写?下面是小编为您精心整理的“微分”相关范文大全或资料大全,欢迎大家分享。
微分几何试题
整理的题目,期末可以练练
一、填空题:
1.设有曲线x etcost,y etsint,z et,则当t 0时的切线方程为x 1 y z 1。 2.设曲面S:r r(u,v)的第一基本形式为I du sinhudv,则其上的曲线u v从
2
2
2
et e t
(这里sinht ) v v1到v v2的弧长为|sinhv1 sinhv2|。
2
3.设曲面S:r r(u,v)在某点处的第一基本量为E G 1,F 0,第二基本量为,则曲面在该点沿方向(d) (1:2)的法曲率为kn L a,M 0,N b
a 4b
。 5
4.设曲面S:r r(u,v)在某点处的第一类基本量为E 1,G 1,且曲面在该点的切向量
ru,rv相互平行,则F在该点等于 5.设曲面S:r r(u,v)在某点处的第二基本量为L 1,M 0,N 1,则曲面在该点的渐近方向为(d) (1: 1)。
6.设曲面的参数表示为r r(u,v),则|ru r
v| 7.曲线x tsin
t,y tcost,z te在原点的切向量为α
(0,
t
,主法向量为22
β
、副法向量为γ 二、计算题
1.圆柱螺线的参数表示为r (cost,sint,t)。计算它在(1,0,0)点的切线、密切平面、法平面方程以及在任意点
微分几何与伴随着微分几何的发展
微分几何与伴随着微分几何的发展而创立的张量分析是掌握广义相对论的基础工具。也由于广义相对论的成功,使一向冷僻的微分几何成为数学的中心学科之一。
从微积分发明起,微分几何的萌芽就诞生了。但是Euler、Clairaut和Monge的工作才真正使微分几何成为独立学科。Euler在关于测地学的工作中逐步得出重要得研究,并对法曲率的计算得出著名的Euler公式。Clairaut研究了曲线的曲率和挠率,Monge发表了《分析应用于几何的活页论文》,将曲线与曲面的重要性质用微分方程表示,使得经典微分几何的发展到达一个高峰期。Gauss在测地学的研究中,经过繁杂的计算,于 1827年发现了曲面的两个主曲率乘积与它在外围的Euclidean空间中的形状无关,仅仅取决于其第一基本形式,这个结果被Gauss得意地称为是绝妙定理,从而创立了内蕴几何,把曲面的研究从外围空间中解脱出来,将曲面自身作为一个空间来研究。1854年Riemann作了《关于几何基础的假设》,推广了 Gauss在 2维曲面的内蕴几何,从而发展出n维Riemann几何,随着多复变函数的发展。一批优秀数学家将微分几何的研究对象扩展到复流形,再拓展到包含奇点的复解析空间理论。微分几何的每一步前进所
5、复合函数微分法与隐函数微分法
复合函数微分法与隐函数微分法
一、复合函数微分法复习: 一元复合函数 y f (u), u ( x)
dy dy du 求导法则 dx du dx微分法则 dy f (u)du f (u) ( x)dx要求:熟练掌握多元复合函数求导的链式法则
1、复合函数的中间变量均为一元函数的情形 定理:若函数u=u(t),v=v(t)都在点t可导,函数z=f(u,v) 在点(u,v)处偏导数连续,则复合函数z=f(u(t),v(t)) 在点t可导,且有链式法则: z
dz z du z dv dt u dt v dt(1)z只有一个自变量 (2)z有两个中间变量 (3)两个中间变量u,v都只一个自变量
u t
v t
证明略
推广: 设z=f(u,v,w) ,u=u(t),v=v(t),w=w(t) ,
则z=f(u(t),v(t),w(t))对t的导数为
z u t v t w t
全 导 数 公 式
dz z du z dv z dw dt u dt v dt w dt
dz z du z dv dt u dt v dt
2、复合函数的中间变量均为多元函数的情
常微分习题
第六章 线性微分方程组
在微分方程理论中,线性微分方程组是非常值得重视的一部分内容。首先,自然界或工程技术中的大量实际系统常常可以直接用线性微分方程组描述,从而作为线性微分方程组去研究。其次,从数学的理论研究来说,线性微分方程组的研究,可以籍助于线性代数的知识给出适当和充分的解释。最后,线性微分方程组线性微分方程组的理论也是进一步研究非线性微分方程组的基础。 §1一般理论
考虑标准形式的n阶线性微分方程组
?dy1?dx?a11(x)y1?a12(x)y2???a1n(x)yn?f1(x)??dy2?a(x)y?a(x)y???a(x)y?f(x)?2112222nn2(1.1) ?dx??????????????????????dyn?a(x)y?a(x)y???a(x)y?f(x)n11n22nnnn??dx其中系数函数aij(x)和fi(x)(i,j?1,2?n)在区间a?x?b上都是连续的。 若记A(x)?(aij(x))n?n Y?(y1,y2,?,yn)T f(x)?(f1(x),f2(x),?fn(x))T. 则可以把上面的线性微分方程组(1.1)写成向量的形式
dY?A(x)Y?f(x)(1.1) dx当f(x)?0时,称(
微分几何与伴随着微分几何的发展
微分几何与伴随着微分几何的发展而创立的张量分析是掌握广义相对论的基础工具。也由于广义相对论的成功,使一向冷僻的微分几何成为数学的中心学科之一。
从微积分发明起,微分几何的萌芽就诞生了。但是Euler、Clairaut和Monge的工作才真正使微分几何成为独立学科。Euler在关于测地学的工作中逐步得出重要得研究,并对法曲率的计算得出著名的Euler公式。Clairaut研究了曲线的曲率和挠率,Monge发表了《分析应用于几何的活页论文》,将曲线与曲面的重要性质用微分方程表示,使得经典微分几何的发展到达一个高峰期。Gauss在测地学的研究中,经过繁杂的计算,于 1827年发现了曲面的两个主曲率乘积与它在外围的Euclidean空间中的形状无关,仅仅取决于其第一基本形式,这个结果被Gauss得意地称为是绝妙定理,从而创立了内蕴几何,把曲面的研究从外围空间中解脱出来,将曲面自身作为一个空间来研究。1854年Riemann作了《关于几何基础的假设》,推广了 Gauss在 2维曲面的内蕴几何,从而发展出n维Riemann几何,随着多复变函数的发展。一批优秀数学家将微分几何的研究对象扩展到复流形,再拓展到包含奇点的复解析空间理论。微分几何的每一步前进所
微分方程讲义
课程安排:2学期,周学时 4 , 共 96 学时. 主要内容:定积分的计算 要求:听课 、复习 、 作业 本次课题(或教材章节题目):第七章 微分方程 第一讲 微分方程的基本概念 教学要求: 微分方程的基本概念以及微分方程阶的概念。 重 点:微分方程的基本概念,微分方程阶的概念 难 点: 微分方程的概念; 微分方程阶的概念 教学手段及教具:讲授为主 讲授内容及时间分配: 1 复习 15分钟 2 微分方程的问题举例 30分钟 3 微分方程概念以及阶数练 45分钟 课后 作业 参考 资料 定积分的概念与性质 一、复习导数和高阶导数的概念 二、微分方程问题举例及引出 函数是客观事物的内部联系在数量方面的反映?利用函数关系又可以对客观事物的规律性进行研究?因此如何寻找出所需要的函数关系?在实践中具有重要意义?在许多问题中?往往不能直接找出所需要的函数关系?但是根据问题所提供的情况?有时可以列出含有要找的函数及其导数的关系式?这样的关系就是所谓微分方程?微分方程建立以
2、 导数与微分
二、 一元函数微分学 第 1 页 共 28 页
二、 导数与微分学
[选择题]
容易题 1—39,中等题40—106,难题107—135。
1.设函数y?f(x)在点x0处可导,?y?f(x0?h)?f(x0),则当h?0时,必有( )
(A) dy是h的同价无穷小量. (B) ?y-dy是h的同阶无穷小量。 (C) dy是比h高阶的无穷小量. (D) ?y-dy是比h高阶的无穷小量. 答D
2. 已知f(x)是定义在(??,??)上的一个偶函数,且当x?0时,f?(x)?0,f??(x)?0, 则在(0,??)内有( )
(A)f?(x)?0,f??(x)?0。 (B)f?(x)?0,f??(x)?0。 (C)f?(x)?0,f??(x)?0。 (D)f?(x)?0,f??(x)?0。 答C
3.已知f(x)在[a,b]上可导,则f?(x)?0是f(x)在[a,b]上单减的( )
(A)必要条件。 (B) 充分条件。
(C)充要条件。 (D)既非必要,又非充分条件。 答B
x2arctanx的渐近线的条数,则n?( )
12微分方程
第十二章 微分方程
一、内容提要
(一)主要定义
【定义12.1】 微分方程 表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程.未知函数是一元函数的叫做常微分方程; 未知函数是多元函数的叫做偏微分方程.
【定义12.2】 微分方程的阶 微分方程中出现的未知函数的最高阶导数的阶数,称为微分方程的阶.
一般形式为: Fx,y,y?,y??,?,y标准形式为:y?n??(n)??0.
??fx,y,y?,?,y?n?1?.
?【定义12.3】 微分方程的解 若将函数y???x?代入微分方程使其变成恒等式 即 F?x,??x?,???x????n???x????0,
或者 ??n??x????x?,?,??n?1??x?? f?x,?x,?????则称y???x?为该方程的解.
根据y?y?x?是显函数还是隐函数 ,分别称之为显示解与隐式解.若解中含有任意常数,当独立的任意常数的个数正好与方程的阶数相等时该解叫做通解(或一般解);不含有任意常数的解叫特解.
【定义12.4】 定解条件 用来确定通解中任意常数的条件称为定解条件,最常见的定解条件是初始条件.
例
【例1
微分几何期末1
1、等距变换一定是保角变换 (×) 2、空间曲线的形状由曲率与挠率唯一确定. (√)
22A(u,v)du?2B(u,v)dudv?B(u,v)dv?0总表示曲面上两族曲线. 3、二阶微分方程
(×)
4、连接曲面上两点的所有曲线段中,测地线一定是最短的 (×) 5、坐标曲线网是正交网的充要条件是F?0,这里F是第一基本量 (√) 6、在空间曲线的非逗留点处,密切平面存在且唯一。 ( √ ) 7、空间曲线的曲率与挠率完全确定了空间曲线的形状与位置。 ( × ) 8、在曲面的非脐点处,最多有二个渐近方向。 ( √ ) 9、LN-M2不是内蕴量。 ( × )
10、高斯曲率恒为零的曲面一定是可展的。 ( √ )
....????????11、曲线r=r(s)为一般螺线的充要条件为(r,r,r)=0 (√)
2、 导数与微分
二、 一元函数微分学 第 1 页 共 28 页
二、 导数与微分学
[选择题]
容易题 1—39,中等题40—106,难题107—135。
1.设函数y?f(x)在点x0处可导,?y?f(x0?h)?f(x0),则当h?0时,必有( )
(A) dy是h的同价无穷小量. (B) ?y-dy是h的同阶无穷小量。 (C) dy是比h高阶的无穷小量. (D) ?y-dy是比h高阶的无穷小量. 答D
2. 已知f(x)是定义在(??,??)上的一个偶函数,且当x?0时,f?(x)?0,f??(x)?0, 则在(0,??)内有( )
(A)f?(x)?0,f??(x)?0。 (B)f?(x)?0,f??(x)?0。 (C)f?(x)?0,f??(x)?0。 (D)f?(x)?0,f??(x)?0。 答C
3.已知f(x)在[a,b]上可导,则f?(x)?0是f(x)在[a,b]上单减的( )
(A)必要条件。 (B) 充分条件。
(C)充要条件。 (D)既非必要,又非充分条件。 答B
x2arctanx的渐近线的条数,则n?( )