二次函数和相似三角形存在性解题技巧视频
“二次函数和相似三角形存在性解题技巧视频”相关的资料有哪些?“二次函数和相似三角形存在性解题技巧视频”相关的范文有哪些?怎么写?下面是小编为您精心整理的“二次函数和相似三角形存在性解题技巧视频”相关范文大全或资料大全,欢迎大家分享。
二次函数函数的存在性问题(相似三角形)
二次函数函数的存在性问题(相似三角形)
1、(09贵州安顺)如图,已知抛物线与x交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3)。 (1)求抛物线的解析式; (2)设抛物线顶点为D,求四边形AEDB的面积; (3)△AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由。
0),C(0,?3), 2、(09青海)矩形OABC在平面直角坐标系中位置如图所示,A、C两点的坐标分别为A(6,直线y??3x与BC边相交于D点. 42(1)求点D的坐标; (2)若抛物线y?ax?9x经过点A,试确定此抛物线的表达式; 4(3)设(2)中的抛物线的对称轴与直线OD交于点M,点P为对称轴上一动点,以P、O、M为顶点的三角形
y 与△OCD相似,求符合条件的点P的坐标.
1
O ?3 C A 6 D B y??3x4x 3、(09广西钦州)如图,已知抛物线y=
过点C的直线y=且0<t<1.
32
x+bx+c与坐标轴交于A、B、C三点, A点的坐标为(-1,0)43x-3与x轴交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB于点H.若PB=5t, 4t(1)填空:点C的坐标是_ _,b=
二次函数与相似三角形问题
综合题讲解 函数中因动点产生的相似三角形问题
例题 如图1,已知抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B。 ⑴求抛物线的解析式;(用顶点式求得抛物线的解析式为y x2 x) ...
⑵若点C在抛物线的对称轴上,点D在抛物线上,且以O、C、D、B四点为顶点的四边形为平行四边形,求D点的坐标;
⑶连接OA、AB,如图2,在x轴下方的抛物线上是否存在点P,使得△OBP与△OAB相似?若存在,求出P点的坐标;若不存在,说明理由。
1
4
.......
分析:1.当给出四边形的两个顶点时应以两个顶点的连线O、C、D、B四点为顶点的四边形为平行四边形要分类讨论:按OB为边和对角线两种情况
2. 函数中因动点产生的相似三角形问题一般有三个解题途径
① 求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特..殊三角形。根据未知三角形中已知边与已知三角形的可能对应边分类讨论。
推导边的大小。
相似来列方程求解。
例题2:如图,已知抛物线y=ax2+4ax+t(a>0)交x轴于A、B两点,交y轴于点C,抛物线的对称轴交x轴于点E,点B的坐标为(-1,0). (1)求抛物线的对称轴及点A的坐标;
(2)过点C作x轴的平行线交抛
二次函数和相似三角形的综合应用
二次函数和相似三角形的综合应用
1、如图,已知抛物线y=?1(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y轴相交m于点E,且点B在点C的左侧。 (1)若抛物线过点M(2,2),求实数m的值; (2)在(1)的条件下,求△BCE的面积;
(3)在第四象限内,抛物线上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由。
2、如图,已知抛物线y?k(x?2)(x?4)(k为常数,且k?0)与x轴从左至右依次交8于A,B两点,与y轴交于点C,经过点B的直线y??(1)若点D的横坐标为-5,求抛物线的函数表达式;
3 x?b与抛物线的另一交点为D。
3(2)若在第一象限的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求k的值;
(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止。当点F的坐标是多少时,点M在整个运动过程中用时最少?
3、如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得
二次函数的存在性问题(相似三角形的存在性问题) - 图文
二次函数的存在性问题(相似三角形)
1、已知抛物线的顶点为A(2,1),且经过原点O,与x轴的另一交点为B。
(1)求抛物线的解析式;
(2)若点C在抛物线的对称轴上,点D在抛物线上,且以O、C、D、B四点为顶点的四边形为平行四边形,求D点的坐标;
(3)连接OA、AB,如图②,在x轴下方的抛物线上是否存在点P,使得△OBP与△OAB相似?若存在,求出P点的坐标;若不存在,说明理由。
y y
A A x x B B O O
图① 图②
2、设抛物线y?ax?bx?2与x轴交于两个不同的点A(一1,0)、B(m,0),与y轴交于点C.且∠ACB=90°.
2 1
(1)求m的值和抛物线的解析式;(2)已知点D(1,n )在抛物线上,过点A的直线y?x?1交抛物线于另一点E.若点P在x轴上,以点P、B、D为顶点的三角形与△AEB相似,求点P的坐标.(3)在(2)的条件下,△BDP的外接圆半径等于________________.
解:(1)令x=0,得y=-2 ∴C(0,一2).∵ACB=90°,CO⊥AB,.∴ △AOC ∽△COB,.
OC222∴OA·OB=OC;∴OB=??4 ∴m=4.
OA12
y
6 4 2
二次函数与相似三角形综合题20160203
二次函数与相似三角形
例1 如图1,已知抛物线y??x2?x的顶点为A,且经过原,与x轴交于点O、B。 (1)若点C在抛物线的对称轴上,点D在抛物线上,且以O、C、D、B四点为顶点的四边形为平行四边形,求D点的坐标;
(2)连接OA、AB,如图2,在x轴下方的抛物线上是否存在点P,使得△OBP与△OAB相似?若存在,求出P点的坐标;若不存在,说明理由。
.......
分析:1.当给出四边形的两个顶点时应以两个顶点的连线为四边形的边和对角线来考虑问题以O、C、D、B四点为顶点的四边形为平行四边形要分类讨论:按OB为边和对角线两种情况
2. 函数中因动点产生的相似三角形问题一般有三个解题途径
① 求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三..角形是否为特殊三角形。根据未知三角形中已知边与已知三角形的可能对应边分类讨论。 ②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。
③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。
解:⑴如图1,当OB为边即四边形OCDB是平行四边形时,CD∥=O
相似三角形与圆、二次函数综合题
浙基教育武义校区1对1个性化教学 好老师!好成绩!更自信! 相似三角形的中考综合题 相似三角形知识点大总结
知识点1 有关相似形的概念 知识点2 比例线段的相关概念
(1)如果选用同一单位量得两条线段a,b的长度分别为m,n,那么就说这两条线段的比是 ,或写成 .注:在求线段比时,线段单位要 。
(2)注:①比例线段是有顺序的,如果说a是b,c,d的第四比例项,那么应得比例式为: .②
ac?(a:b?c:d)中,a、d叫 ,b、c叫 , a、c叫 ,b、d叫 ,d叫 ,bd如果b=c,即 a:b?b:d那么b叫做a、d的 , 此时有 。 在比例式(3)黄金分割: 。
0
注:黄金三角形:顶角是36的等腰三角形。黄金矩形:宽与长的比等于黄金数的矩形
知识点3 比例的性质(注意性质立的条件:分母不能为0)
(1) 基本性质:
注:由一个比例式只可化成一个
相似三角形存在性问题
- -
- 总结 因动点产生的相似三角形问题
例1 2015年市宝山区嘉定区中考模拟第24题
如图1,在平面直角坐标系中,双曲线(k ≠0)与直线y =x +2都经过点A (2, m ).
(1)求k 与m 的值;
(2)此双曲线又经过点B (n , 2),过点B 的直线BC 与直线y =x +2平行交y 轴于点C ,联结AB 、AC ,求△ABC 的面积;
(3)在(2)的条件下,设直线y =x +2与y 轴交于点D ,在射线CB 上有一点E ,如果以点A 、C 、E 所组成的三角形与△ACD 相似,且相似比不为1,求点E 的坐标.
图1
动感体验
请打开几何画板文件名“15宝山嘉定24”,拖动点E 在射线CB 上运动,可以体验到,△ACE 与△ACD 相似,存在两种情况.
思路点拨
1.直线AD //BC ,与坐标轴的夹角为45°.
2.求△ABC 的面积,一般用割补法.
3.讨论△ACE 与△ACD 相似,先寻找一组等角,再根据对应边成比例分两种情况列方程.
满分解答
(1)将点A (2, m )代入y =x +2,得m =4.所以点A 的坐
相似三角形中证明技巧
相似三角形中的辅助线添加和相似三角形证明技巧
在添加辅助线时,所添加的辅助线往往能够构造出一组或多组相似三角形,或得到成比例的线段或得出等角,等边,从而为证明三角形相似或进行相关的计算找到等量关系。主要的辅助线有以下几种:
一、作平行线 例1. 如图, 的AB边和AC边上各取一点D和E,且使AD=AE,DE延长线与BCABC延长线相交于F,求证:
BFBD
CFCE
B
A C
F F
证明:过点C作CG//FD交AB于G
小结:本题关键在于AD=AE这个条件怎样使用。由这道题还可以增加一种证明线段相等的方法:相似、成比例。
例2. 如图,△ABC中,AB<AC,在AB、AC上分别截取BD=CE,DE,BC的延长线相交于点F,证明:AB·
DF=AC·EF。
分析:证明等积式问题常常化为比例式,再通过相似三角形对应边成比例来证明。
ABEF
欲证AB DF AC ,而这四条线段所在的两个三角形显然
ACDF
不相似,因而要通过两组三角形相似,运用中间比代换得到,为构造相似三角形,需添加平
行线。
方法一:过E作EM//AB,交BC于点M,则△EMC∽△ABC(两角对应相等,两三角形相似)。
EM AC AB EC
相似三角形的存在性问题
相似三角形的存在性问题 288y??y??y??例1.如图,双曲线 和 在第二象限中的图像,A点在 的xxx图像上,点 2y??A的横坐标为m(m<0),AC∥y轴交 x图像于点AB,DC均平行于x轴,分别交 82、的图像于点B、D. y ??y??xx (1)用m表示A、B、C、D的坐标. (2)若⊿ABC与⊿ACD相似,求m的值. 分析:△ABC与△ACD保持直角三角形的性质不变 第一步 寻找分类标准 分两种情况: ABCAABCD ? ? ① ② ACCDACCA 第二步 无须画图——罗列线段的长 82 y??xxC?xA?m,yC?yD??????xD?4mm?BA???C?D28m y??xyB?yA?????x??Bm4 8??m8??A?m,??,B?,??,m??4m??2??2??C?m,??,D?4m,??m??m??3m46mAB??AC??CD??3m注:数形结合,当心负号 ① C
三角函数和相似三角形综合题
三角函数和相似三角形综合题
1、(2017?哈尔滨)在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为( ) A.11515417B.C .D.
4415172、(2017?金华)在Rt△ABC中,∠C=90°,AB=5,BC=3,则tanA的值是( ) A.
3434 B. C. D. 43551,那么sinA的值是( ) 2C.
3、(2017?聊城)在Rt△ABC中,cosA=
A.
2 2B.
3 23 3
1D.
2
4、(2017?安顺)如图,⊙O的直径AB=4,BC切⊙O于点B,OC平行于弦AD,OC=5,则AD的长为( )
6A.
5
B.
8 5C.
7 5D.
23 5
5、(2017?滨州)如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC的值为( )
A.2+3 B.23 C.3+3 D.33
6、(2017?白银)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°