1995数四考研真题答案解析
“1995数四考研真题答案解析”相关的资料有哪些?“1995数四考研真题答案解析”相关的范文有哪些?怎么写?下面是小编为您精心整理的“1995数四考研真题答案解析”相关范文大全或资料大全,欢迎大家分享。
1995考研数二真题及解析
1995年全国硕士研究生入学统一考试数学二试题
一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.) (1) 设y?cos(x)sin221,则y??______. x(2) 微分方程y???y??2x的通解为______.
2??x?1?t(3) 曲线?在t?2处的切线方程为______. 3??y?t(4) lim(n??12n??L?)?______.
n2?n?1n2?n?2n2?n?n2(5) 曲线y?x2e?x的渐近线方程为______.
二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)
(1) 设f(x)和?(x)在(??,??)内有定义,f(x)为连续函数,且f(x)?0,?(x)有间断点,
则 ( ) (A) ?[f(x)]必有间断点 (B) [?(x)]2必有间断点 (C) f[?(x)]必有间断点 (D)
?(x)必有间
2004考研数四真题及解析
Born to win
2004年全国硕士研究生入学统一考试数学四试题
一、填空题:本题共6小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (1) 若limsinx(cosx?b)?5,则a =
x?0ex?ax,b =.
dye2x(2) 设y?arctane?ln,则
dxe2x?1?x?1.
11?x2xe,??x??22,则2f(x?1)dx?(3) 设f(x)???121??1,x?2?.
?0?10???0?,B?P?1AP,其中P为三阶可逆矩阵, 则B2004?2A2?(4) 设A??10?00?1???(5) 设A?aij
.
??3?3是实正交矩阵,且a11?1,b?(1,0,0),则线性方程组Ax?b的解是
T.
(6) 设随机变量X服从参数为λ的指数分布, 则P{X?DX}?.
二、选择题:本题共8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. (7) 函数f(x)?|x|sin(x?2)在下列哪个区间内有界( ) 2x(x?1)(x?2)(B) (0 , 1).
(C) (1 , 2).
(D) (2 ,
1993考研数四真题及解析
Born to win
1993年全国硕士研究生入学统一考试数学四试题
一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.) (1) lim?1?2?n????n?1?2??(n?1)??? .
(2) 已知y?f?dy?3x?2??2则,fx?arcsinx,???dx?3x?2?? . x?0(3)
dx??2?x?1?x? .
*
(4) 设4阶方阵A的秩为2,则其伴随矩阵A的秩为 . (5) 设10件产品中有4件不合格品,从中任取两件,已知索取两件产品中有一件是不合格品,
则另一件也是不合格品的概率为 .
二、选择题(本题共5小题,每小题3分,满分15分.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内.)
1??xsin2,x?0,(1) 设f?x???则f?x?在点x?0处 ( ) x?? 0, x?0,(A) 极限不存在 (B) 极限存在但不连续 (C
1993考研数四真题及解析
Born to win
1993年全国硕士研究生入学统一考试数学四试题
一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.) (1) lim?1?2?n????n?1?2??(n?1)??? .
(2) 已知y?f?dy?3x?2??2则,fx?arcsinx,???dx?3x?2?? . x?0(3)
dx??2?x?1?x? .
*
(4) 设4阶方阵A的秩为2,则其伴随矩阵A的秩为 . (5) 设10件产品中有4件不合格品,从中任取两件,已知索取两件产品中有一件是不合格品,
则另一件也是不合格品的概率为 .
二、选择题(本题共5小题,每小题3分,满分15分.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内.)
1??xsin2,x?0,(1) 设f?x???则f?x?在点x?0处 ( ) x?? 0, x?0,(A) 极限不存在 (B) 极限存在但不连续 (C
1999考研数四真题及解析
Born to win
1999 年全国硕士研究生入学统一考试数学四试题
一、填空题(本题共5个小题,每小题3分,满分15分。把正确答案填写在题中横线上。)
1ln[f(1)f(2)f(n)]? x??n2(2) 设f(x,y,z)?exyz2,其中z?z(x,y)是由x?y?z?xyz?0确定的隐函数,则
fx?(0,1,?1)?
(1) 设函数f(x)?ax(a?0,a?1),则lim?101???nn?1(3) 设A??020?,而n?2为整数,则A?2A?
?101????1?20???(4) 已知AB?B?A,其中???210?,则A?
?002???(5) 设随机变量X服从参数为?的泊松(Poisson)分布,且已知E[(X?1)(X?2)]?1,则??
二、选择题(本题共5小题,每小题3分,满分15分。每小题给出得四个选项中,只有一个是符合题目要求的,把所选项前的字母填在提后的括号内。)
(1) 设f(x)是连续函数,F(x)是f(x)原函数,则 ( )
(A)当f(x)是奇函数时,F(x)必是偶
2003考研数四真题及解析
Born to win
2003年全国硕士研究生入学统一考试数学四试题
一、填空题:本题共6小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (1) 极限lim[1?ln(1?x)]=
x?02x . .
(2)
?1?1(x?x)e?xdx=
?a,若0?x?1,(3) 设a?0,f(x)?g(x)?? 而D表示全平面,则
0,其他,?I???f(x)g(y?x)dxdy=
D .
?202???(4) 设A,B均为三阶矩阵,E是三阶单位矩阵. 已知AB?2A?B, B?040,则 ????202??(A?E)?1=
.
T(5) 设n维向量??(a,0,?,0,a),a?0;E为n阶单位矩阵,矩阵
1A?E???T, B?E???T,
a其中A的逆矩阵为B,则a? .
(6) 设随机变量X 和Y的相关系数为0.5,EX?EY?0,EX?EY?2, 则
22E(X?Y)2= .
二、选择题:本题共6小题,每小题4分,共24分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.
1(1) 曲线y?xex ( )
1995年考研英语真题与答案
(红宝书版)1995年全国硕士研究生入学统一考试英语试题及答案
1995年考研英语真题
Part Ⅰ Structure and Vocabulary
Section A
Directions:
Beneath each of the following sentences, there are four choices marked A, B, C and D. Choose the one that best completes the sentence.Mark your answer on the ANSWER SHEET by blackening the corresponding letter in the brackets, (5 points)
1. Between 1897 and 1919, at least 29 motion pictures in which artificial beings were portrayed . A. had produced B. have been produced C. would have produced
2006年数二考研真题答案解析
2006年硕士研究生入学考试(数学二)试题及答案解析
一、 填空题:1-6小题,每小题4分,共24分. 把答案填在题中横线上. (1)曲线
y?1x?4sinx 的水平渐近线方程为 y?.
55x?2cosx【分析】直接利用曲线的水平渐近线的定义求解即可.
4sinxx?4sinxx?1.
【详解】lim?limx??5x?2cosxx??2cosx55?x1 故曲线的水平渐近线方程为 y?.
51?(2)设函数
?1x21?3?0sintdt,x?0在x?0处连续,则a?. f(x)??x3?a, x?0?【分析】本题为已知分段函数连续反求参数的问题.直接利用函数的连续性定义即可. 【详解】由题设知,函数
f(x)在 x?0处连续,则
limf(x)?f(0)?a,
x?0?又因为 limf(x)?limx?0x?0x0sint2dtx3sinx21?lim?. x?03x23所以
a?1. 3(3) 广义积分
???01xdx?(1?x2)22.
【分析】利用凑微分法和牛顿-莱布尼兹公式求解.
【详解】
???02bd(1+x)xdx111?lim??lim22(1?x2)22b???0(1
2006年数二考研真题答案解析
2006年硕士研究生入学考试(数学二)试题及答案解析
一、 填空题:1-6小题,每小题4分,共24分. 把答案填在题中横线上. (1)曲线
y?1x?4sinx 的水平渐近线方程为 y?.
55x?2cosx【分析】直接利用曲线的水平渐近线的定义求解即可.
4sinxx?4sinxx?1.
【详解】lim?limx??5x?2cosxx??2cosx55?x1 故曲线的水平渐近线方程为 y?.
51?(2)设函数
?1x21?3?0sintdt,x?0在x?0处连续,则a?. f(x)??x3?a, x?0?【分析】本题为已知分段函数连续反求参数的问题.直接利用函数的连续性定义即可. 【详解】由题设知,函数
f(x)在 x?0处连续,则
limf(x)?f(0)?a,
x?0?又因为 limf(x)?limx?0x?0x0sint2dtx3sinx21?lim?. x?03x23所以
a?1. 3(3) 广义积分
???01xdx?(1?x2)22.
【分析】利用凑微分法和牛顿-莱布尼兹公式求解.
【详解】
???02bd(1+x)xdx111?lim??lim22(1?x2)22b???0(1
考研数学一历年真题1995
1995年全国硕士研究生入学统一考试
数学(一)试卷
一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)
2(1)lim(1 3xsinx
x 0
)
=_____________.
(2)d0dx
x2xcost2
dt= _____________. (3)设(a b) c 2,则[(a b) (b c)]
(c a)=_____________.
(4)幂级数 n2n 1n ( 3)
n
x的收敛半径R=_____________. n 12 1 00
3
(5)设三阶方阵A,B满足关系式A 1
BA 6A BA,且A 0
1
40 ,则B=_____________.
00
1 7
二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)
(1)设有直线L
: x 3y 2z 1 0
2x y 10z 3 0
,及平面 :4x 2y z 2 0,则直线L
(A)平行于 (B)在 上 (C)垂直于
(D)与 斜交
(2)设在[0,1]上f (x) 0,则f (0),f (1),f(1) f(0)或f(0) f(1)的大小顺序是