指数和指数幂的运算
“指数和指数幂的运算”相关的资料有哪些?“指数和指数幂的运算”相关的范文有哪些?怎么写?下面是小编为您精心整理的“指数和指数幂的运算”相关范文大全或资料大全,欢迎大家分享。
指数与指数幂的运算
篇一:指数与指数幂的运算(例题讲解加同步练习)
指数与指数幂的运算
知能点全解:
知能点1:有理数指数幂及运算性质 1、有理数指数幂的分类 (1)正整数指数幂an
n个
?????
?0
?a?a?a???a(n?N); (2)零指数幂a?1(a?0);
(3)负整数指数幂a?n?
1a
n
?a?0,n?N??
(4)0的正分数指数幂等于0, 0的负分数指数幂没有意义。 2、有理数指数幂的性质 (1)aa?a
m
m
n
m?n
?a?0,m,n?Q?(2)?a?
m
n
?amn?a?0,m,n?Q?
(3)?ab??ambm?a?0,b?0,m?Q?
例 1:把下列各式中的a写成分数指数幂的形式
(1)a5?256;(2)a?4?28;(3)a?7?56;(4)a?3n?35m?m,n?N??
1
解:(1)a?256;(2)a?28
5
?
14
;(3)a?5
?32
?
67
;(4)a?3
?
5m3n
例 2:计算 (1)9
3
32
; (2)16
2?32
?32
解:(1)9??3
2
2
?
32
?3?3?27
3
;(2)16
??4
2
?
?
32
?4
?3
?64
?1
?
1
若a>0,P是一个无理数,则ap表示一个确定的实数,上述有理指数幂的运算性质,对于无理数指数幂都适用。
例 3: 化简(式中字母都是正数)
(1)?解
指数与指数幂的运算教学设计
教学设计
课题名称:指数与指数幂的运算
姓名:曾小林 学科年级:必修一 教材版本:人教A版 新授课
教学方法:讲授法与探究法 教学媒体选择:多媒体教学 学习者分析:
1.需求分析:在研究指数函数前,学生应熟练掌握指数与指数幂的运算,通过本节内容将指数的取值范围扩充到实数,为学习指数函数打基础 2.学情分析:在中学阶段已经接触过正数指数幂的运算,但是这对我们研究指数函数是远远不够的,通过本节课使学生对指数幂的运算和理解更加深入。 学习任务分析:
1.教材分析:本节的内容蕴含了许多重要的数学思想方法,如推广思想,逼近思想,教材充分关注与实际问题的联系,体现了本节内容的重要性和数学的实际应用价值
2.教学重点:根式的概念及n次方根的性质;分数指数幂的意义及运算性质;分数指数幂与根式的互化。
3.教学难点:n次方根的性质;分数指数幂的意义及分数指数幂的运算。 教学目标阐明:
1.知识与技能:理解根式的概念及性质,掌握分数指数幂的运算,能够熟练的进行分数指数幂与根式的互化。
2.过程与方法:通过探究和思考,培养学生推广和逼近的数学思想方法,提高学生的知识迁移能力和主动参与能力。 3.情感态
2.1.1指数与指数幂的运算 教案
2.1 指数函数
2.1.1 指数与指数幂的运算
整体设计
教学分析
我们在初中的学习过程中,已了解了整数指数幂的概念和运算性质.从本节开始我们将在回顾平方根和立方根的基础上,类比出正数的n次方根的定义,从而把指数推广到分数指数.进而推广到有理数指数,再推广到实数指数,并将幂的运算性质由整数指数幂推广到实数指数幂.
教材为了让学生在学习之外就感受到指数函数的实际背景,先给出两个具体例子:GDP的增长问题和碳14的衰减问题.前一个问题,既让学生回顾了初中学过的整数指数幂,也让学生感受到其中的函数模型,并且还有思想教育价值.后一个问题让学生体会其中的函数模型的同时,激发学生探究分数指数幂、无理数指数幂的兴趣与欲望,为新知识的学习作了铺垫.
本节安排的内容蕴涵了许多重要的数学思想方法,如推广的思想(指数幂运算律的推广)、类比的思想、逼近的思想(有理数指数幂逼近无理数指数幂)、数形结合的思想(用指数函数的图象研究指数函数的性质)等,同时,充分关注与实际问题的结合,体现数学的应用价值.
根据本节内容的特点,教学中要注意发挥信息技术的力量,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持.
三维目标
1.通过与初中所学的知识进行类比
高中数学人教版必修一:2.1.1《指数与指数幂的运算》(2)指数幂及其运算
数学精品
2.1.1《指数与指数幂的运算》(2)指数幂及其运算导学案
【学习目标】:
正确理解分数指数幂的概念,掌握根式与分数指数幂的互化,掌握有理数指数幂的运算. 【重点难点】
重点:有理数指数幂的运算.
难点:有理数指数幂的运算.无理数指数幂的意义. 【知识链接】
1.什么叫根式?→根式运算性质:
(na)n=?、nan=?、amp=?
2.分数指数幂如何定义?运算性质?
3.计算下列各式的值:(2?b)2 ;(3?5)3;234,5a10,379
4.基础习题练习:(口答下列基础题)
np??_____?x?0?n①n为 时,xn?|x|??.
??_____(x?0)②求下列各式的值:
2①326;②416;③681;④6(?2);
⑤15?32;⑥ 4x8;⑦ 6a2b4.
【学习过程】
1.分数指数幂概念及运算性质: ① 引例:a>0时,
2323a?5(a)?a?a→a??; ②定义分数指数幂:
mnnm*5102521053123a?(a)?a →
?mn233a??.
规定:a?a(a?0,m,n?N,n?1);a2、无理指数幂(课本不作要求)
[来源学。科。网Z。X。X。K]?1amn
实数指数幂及其运算运算教案
3.1.1实数指数幂及其运算
知识与技能: (1)掌握根式的概念;
(2)规定分数指数幂的意义;
(3)学会根式与分数指数幂之间的相互转化; (4)理解有理指数幂的含义及其运算性质; (5)了解无理数指数幂的意义
过程与方法: 通过指数范围的扩大,使学生能理解运算的本质,认识到知识之间
的联系和转化,认识到符号化思想的重要性,在抽象的符号或字母的运算中提高运算能力.
情感态度与价值观: 通过对根式与分数指数幂的关系的认识,使学生能学会透过表面去认清事物的本质. 一、引入课题
有典故引入课题,了解指数指数概念提出背景,体会引入指数的必要性; 二、研探新知 (一)整数指数幂
1、整整指数幂:an叫做a的n次幂,n 幂指数,a 幂底数,
n是正整数 正整数指数幂
规定:a1 a
2、正整数指数幂的运算法则:
(1)am an am n (2)am
n
amn
amm
(3)n am n(m n,且a 0) (4) ab am bm
a
3、零指数幂和负整数指数幂 规定:(1)a例:96页A-1
二组:
(1)若m,n Z,满足5m a,5n (2
)已知a
2n
a(a 0) (2)a n
1
(a 0,n N ) an
1
,则52m n . b
a3n a 3n
2.1.1指数与指数幂的运算(第12份)
2017-2018学年(上)厦门十中数学学案及校本作业(12)
2.1.1 指数与指数幂的运算
基础知识梳理
1.指数及其相关概念:
(1)n次方根:如果存在实数x,使得x=a(a∈R,n>1,n∈N),那么x叫做a的n次方根. (2)求a的n次方根,叫做a开n次方,称作开方运算;
n??n为奇数, a的n次方根有一个,为a a为正数:?n??n为偶数, a的n次方根有两个,为?an
*
??n为奇数, a的n次方根只有一个,为naa为负数:?
??n为偶数, a的n次方根不存在.(3)n次方根的运算性质:
n
①(a)n=a.先开方,再乘方(同次),结果为被开方数.
n
②n为奇数,an=a.先奇次乘方,再开方(同次),结果为被开方数; n为偶数,
n
??a,
a=|a|=?
?-a,?
n
a≥0,
a<0.
先偶次乘方,再开方(同次),结果为被开方数的绝对值.
2.分数指数幂:
正分数指数幂:a= ;(a>0,m,n∈N*,且n>1) 负分数指数幂:a?mnmn= = ;(a>0,m,n∈N*,且n>1)
3.指数幂的运算性质:
(na)n= ;na= (当n为奇数时);na=
指数运算和指数函数
第五讲 指数运算和指数函数
一、知识点
1.根式的性质
nan?
2.幂的有关概念
(1)正整数指数幂:an?a??a??a.............a(n?N?) ?????n?p(2)零指数幂a?1(a?0) (3)负整数指数幂 a?01(a?0.p?N?) pa(4)正分数指数幂 amn?nam(a?0,m,n?N?,且n?1)
mn(5)负分数指数幂 a??1amn(a?0,m,n?N?,且n?1)
(6)0的正分数指数幂等于0,0的负分数指数幂无意义 3.有理指数幂的运算性质 (1)a?a?arrrsr?s,(a?0,r,s?Q) (2)(ar)s?ars,(a?0,r,s?Q)
s (3)(ab)?a?a,(a?0,b?0,r?Q)
4.指数函数定义:函数y?a(a?0且a?1)叫做指数函数。 5. 指数函数的图象和性质
xy?ax 0 < a < 1 a > 1 图 象 定义域 性 质 值域 定点 单调性 对称性 y?ax和y?a?x关于 对称
1.函数y?(x?5)0?(x?2)
?12
( )
A.{x|x?5,x?2}
2.1.1 指数与指数幂的运算 第1课时 根式
第二章 基本初等函数(Ⅰ)2.1 指数函数2.1.1 指数与指数幂的运算第1课时 根式
【引例1】
银杏, 是全球中最古老的树种 . 在 200 多万年前 , 第四纪冰川出现 , 大部分地区的银杏毁于一旦 , 残留 的遗体成为了印在石头里的植物化石.在这场大灾难 中,只有中国保存了一部分活的银杏树,绵延至今,成 了研究古代银杏的活教材 . 所以, 人们把它称为“世 界第一活化石”.
考古学家根据什么推断出银杏于 200多万年前就 存在呢?
【引例2】当生物体死亡后,它机体内原有的碳14会按确定的 规律衰减,大约每经过5730年衰减为原来的一半,这个 时间称为“半衰期”.根据此规律,人们获得了生物体 内碳 14 含量 P 与死亡年数 t 之间的关系 , 这个关系式应 该怎样表示呢我们可以先来考虑这样的问题:
(1)当生物体死亡了5 730, 5 730〓2, 5 730〓3, 年后,它体内碳14的含量P分别为原来的多少?1, 2( 1 ) 2 , ( 1 )3 , 2 2 .
(2)由以上的实例来推断关系式是 P ( 1 ) 2
t 5 730
.
考古学家根据上式可以知道, 生物死亡t年后, 体内碳14的含量P的值. 这里的幂指数已经不是正整数,而是分数
百度指数和谷歌指数查询工具网址
篇一:SEO常用工具
一、站长工具
Chinaz
Chinaz提供的系列SEO工具集,将不少SEO查询集中在一个页面。
爱站
爱站网以百度权重查询起家,之后提供了多种站长常用查询工具。
网站历史查询工具
美国互联网档案馆(The Internet Archive)保存了自1996年开始的各类网站的首页截图资料,不过该网站已经被中国屏蔽了。
二、百度指数与谷歌趋势
谷歌趋势
谷歌趋势又名Google Trends ,主要通过对一段时间内的关键词搜寻量进行统计,得出当下时段的热门内容。百度指数就是类似谷歌趋势的一项内容。
百度指数
是以百度海量网民行为数据为基础的数据分享平台,是当前互联网乃至整个数据时代最重要的统计分析平台之一,自发布之日便成为众多企业营销决策的重要依据。百度指数能够告诉用户:某个关键词在百度的搜索规模有多大,一段时间内的涨跌态势以及相关的新闻舆论变化,关注这些词的网民是什么样的,分布在哪里,同时还搜了哪些相关的词,帮助用户优化数字营销活动方案。
百度指数的理想是“让每个人都成为数据科学家”。对个人而言,大到置业时机、报考学校、入职企业发展趋势,小到约会、旅游目的地选择,百度指数可以助其实现“智赢人生”;对于企业而言,竞品追踪、受众分析、传播效果,均以科
上证指数和恒生指数近5年
上证指数和恒生指数近5年的对数收益率
上证指数
交易日期收盘恒生指数
交易日期收盘2007-01-042007-01-052007-01-082007-01-092007-01-102007-01-112007-01-122007-01-152007-01-162007-01-172007-01-182007-01-192007-01-222007-01-232007-01-242007-01-252007-01-262007-01-292007-01-302007-01-312007-02-012007-02-022007-02-052007-02-062007-02-072007-02-082007-02-092007-02-122007-02-132007-02-142007-02-152007-02-162007-02-262007-02-272007-02-282007-03-012007-03-022007-03-052007-03-062007-03-072007-03-082007-03-092007-03-122007-03-132007-03-142007-03-152715.719-0.027772641.3340.02463