两个重要极限视频

“两个重要极限视频”相关的资料有哪些?“两个重要极限视频”相关的范文有哪些?怎么写?下面是小编为您精心整理的“两个重要极限视频”相关范文大全或资料大全,欢迎大家分享。

极限存在准则,两个重要极限

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

西南石油大学《高等数学》专升本讲义

极限存在准则 两个重要极限

【教学目的】

1、了解函数和数列的极限存在准则; 2、掌握两个常用的不等式; 3、会用两个重要极限求极限。 【教学内容】

1、夹逼准则;

2、单调有界准则; 3、两个重要极限。 【重点难点】

重点是应用两个重要极限求极限。

难点是应用函数和数列的极限存在准则证明极限存在,并求极限。 【教学设计】从有限到无穷,从已知到未知,引入新知识(5分钟)。首先给出极限存在准则(20分钟),并举例说明如何应用准则求极限(20分钟);然后重点讲解两个重要的极限类型,并要求学生能利用这两个重要极限求极限(40分钟);课堂练习(15分钟)。 【授课内容】

引入:考虑下面几个数列的极限

10001、limn???i?1n1n?i1n?i221000个0相加,极限等于0。

2、limn???i?1无穷多个“0”相加,极限不能确定。

3、limxn,其中xn=n??3+xn-1,x1=3,极限不能确定。

对于2、3就需要用新知识来解决,下面我们来介绍极限存在的两个准则:

一、极限存在准则

1.

1.4 极限存在准则与两个重要极限

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

§1.4 极限存在准则与两个重要极限

一、极限存在准则 二、两个重要极限sin x lim =1 x→0 x1 n lim(1 + ) = e n→∞ n上页 下页 返回

§1.4 极限存在准则与两个重要极限

一、极限存在准则1.夹逼准则 1.夹逼准则准则Ⅰ 满足下列条件: 准则Ⅰ 如果数列 x n , y n 及 z n 满足下列条件:

的极限存在, 那么数列 x n 的极限存在, 且 lim x n = a . →∞n

(1) yn ≤ xn ≤ z n ( n = 1,2,3L) ( 2) lim yn = a , lim zn = a , →∞ →∞n→ ∞ n→ ∞

证 Q yn → a ,

zn → a ,

ε > 0, N 1 > 0, N 2 > 0, 使得上页 下页 返回

§1.4 极限存在准则与两个重要极限

当 n > N 1时恒有 y n a < ε,当 n > N 2时恒有 z n a < ε ,

取 N = max{ N 1 , N 2 }, 即 a ε < y n < a + ε,

上两式同时成立, 上两式同时成立

a ε < z n

1-6 极限存在准则及两个重要极限

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

第六节 极限存在准则及 两个重要极限一、函数极限与数列极限的关系 及夹逼准则 二、 两个重要极限

第一章

机动

目录

上页

下页

返回

结束

一、 函数极限与数列极限的关系及夹逼准则1. 函数极限与数列极限的关系 (P37 定理4) 定理1x x0

lim f ( x) A

xn : xn x0 , f ( xn ) 有定义, xn x0 (n ), 有 lim f ( xn ) A n xn

x

为确定起见 , 仅讨论 x x0 的情形.

机动

目录

上页

下页

返回

结束

定理1

x x0

lim f ( x) An

xn x0 , f ( xn )有 lim f ( xn ) A.

有定义, 且

证:“

” 设 lim f ( x) A , 即 0 , 0 , 当x x0

有 f ( x) A .

xn : xn x0 , f ( xn ) 有定义 , 且对上述 , N , 当 故 时, 有y

于是当 n N 时 f ( xn ) A .n

lim f ( xn ) A

A

” 可用反证法证明. (略)机动 目录

x0 上页 下

第二单元 两个重要极限与函数连续性

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

经济数学基础 第2章 导数与微分

第二单元 两个重要极限与函数连续性

第一节 两个重要极限 一、学习目标

通过本课程的学习,我们要学会两个重要极限公式,要会用重要极限公式计 一些函数的极限.

二、内容讲解

limsinxx?1第一个重要极限公式:

x?0

sinx几何说明:如图,设x为单位圆的圆心角,则x对应的小三角形的面积为2xtanx2,

x对应的扇形的面积为2,x对应的大三角形的面积为当x?0时,它们的面

积都是趋于0的 ,即之比的极限是趋于1的.

lim(1?x??1x1第二个重要极限公式:

limsinxx??)x?e;x?0lim(1?x)x?e

问题思考:x?? 0.这不是第一个重要极限公式,当x??时,此式为无穷小量乘以有界变量,其结果仍为无穷小量. 三、例题讲解

limsin3xx例1 x?0

——50——

经济数学基础 第2章 导数与微分

解:

limsin3xxx?0=

lim3sin3x3x13xx?0?3limsin3x3xx?0?3

例2 求极限x??lim(1?x??lim(1?)x

13x)3x?1313x解:

)?lim(1?x??x?[lim(1?x??13x11)3x

第二单元 两个重要极限与函数连续性

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

经济数学基础 第2章 导数与微分

第二单元 两个重要极限与函数连续性

第一节 两个重要极限 一、学习目标

通过本课程的学习,我们要学会两个重要极限公式,要会用重要极限公式计 一些函数的极限.

二、内容讲解

limsinxx?1第一个重要极限公式:

x?0

sinx几何说明:如图,设x为单位圆的圆心角,则x对应的小三角形的面积为2xtanx2,

x对应的扇形的面积为2,x对应的大三角形的面积为当x?0时,它们的面

积都是趋于0的 ,即之比的极限是趋于1的.

lim(1?x??1x1第二个重要极限公式:

limsinxx??)x?e;x?0lim(1?x)x?e

问题思考:x?? 0.这不是第一个重要极限公式,当x??时,此式为无穷小量乘以有界变量,其结果仍为无穷小量. 三、例题讲解

limsin3xx例1 x?0

——50——

经济数学基础 第2章 导数与微分

解:

limsin3xxx?0=

lim3sin3x3x13xx?0?3limsin3x3xx?0?3

例2 求极限x??lim(1?x??lim(1?)x

13x)3x?1313x解:

)?lim(1?x??x?[lim(1?x??13x11)3x

关于全球变暖论文—两个视频观后感

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

关于《不可忽视的真相》、《全球变暖的大骗局》观后感

我们先看的是《全球变暖的大骗局》,感觉触动很深,我们一直认为是权威的东西瞬间倒塌,我一直以来的环保理念也随之动摇。

看完之后,感觉很迷惘,不知道到底应该相信什么,以前的所有老师所有教科书上面写的全部是人为引起全球变暖,进而导致生物多样性减少、海平面下降、臭氧层空洞等等,人类在享受的同时毁灭着自己的家园—地球,我们在透支着子孙们的资源环境。很遗憾,我们只是被告知有这么一个事情、一个理念,我们自己并没有去科学地研究出什么数据来,只是老师教科书怎么说我们便怎么信,我似乎从来没有怀疑过人为导致全球变暖这个观点。无论这个纪录片真假,我觉得它启发了我不要迷信权威,我们可以去怀疑,我们应该要去怀疑,我们没有必要活在别人的想法中。

纪录片里面出现了很多科学家,他们说他们在冒着生命危险去反对这个观点,坚守自己的理念,那就是人类根本没有力量去影响地球。关于这些科学家,我看完了真的感觉特别钦佩,为了科学,可以将生死置之度外,不为名利、金钱左右,我崇敬并且希望做一个这样的人,我当时想到一些贪官、一些有钱人,道德品质差到极点,评价一个人成就与否,这些钱权之类的硬件条件是不够的,还要看这人软件条件。我又想到老师培养学生

两个家庭

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

  在本世纪初,一个由日本移居在旧金山附近的家庭在那里开创了一项种植玫瑰的产业。他们在一周内的3天早晨把玫瑰送到旧金山。

  另一个家庭是从苏格兰迁移来的,他们家也出售玫瑰花,两个家庭都是依靠诚信获得成功的。他们的玫瑰在旧金山市场上很受欢迎。

  在几乎40年时间里,两个家庭相邻而居,儿子们接管了农场。但是1941年12月7日,日本人轰炸了夏威夷群岛,尽管家庭中的其他成员都已经是美国人了,但是日本人家庭中的父亲从没有加入美国国籍,在混乱情形下和被拘审的期间,他的邻居明确告诉他们,如果有必要,他会照顾他朋友的苗圃。这就像每个信奉基督教的家庭能做的那样:爱你所有的邻人就像爱你自己。“你们也会像我们这样做的。”他告诉他的日本朋友。

  不久,日本人家庭被流放到科罗拉多州格林那达的贫瘠的土地上,新聚居地点的中心由木质柏油顶的大房子组成,周围密布铁蒺藜和全副武装的士兵。

  整整一年过去了。第二年,第三年……当日本人家庭还在拘留地时,他们的朋友一直在暖室中工作着,孩子们星期六之前一直上学,父亲常常每天工作16——17个小时。有一天,欧洲的战争结束了。日本人家庭告别了拘禁生涯,坐上火车,

弹性正碰中的两个重要结论及应用

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

弹性正碰中的两个重要

结论及应用

Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

“弹性正碰”中的两个重要结论及应用

设发生碰撞的两物体质量分别为

由弹性碰撞中,动量和动能都守恒有:

结论1碰前两者相对靠近速度等于碰后两者相对远离速度,即矢量方程⑤。若发生弹性碰撞的两球质量相等,即由①⑤联解得:速度交换法则。

可用用碰撞恢复系数:

1020

12

v v

k

v v

-

=

-

完全弹性碰撞K=1,碰撞之前两者的相对速度与碰撞之后两者相对速度相等

结论2两质量相等的物体发生弹性碰撞的结果是交换速度,即矢量方程组⑥。

1结论1的应用

1.回避数学变换,节约解题时间:解题过程中写出符合题意的①②式后,由结论1立即写出矢量式⑤,再与①式联合可迅速求解两物弹性正碰的所有情况的碰后速度(略去举例)。

2.可迅速判断两物碰后是否为弹性碰撞

:

例形状相同的两个小球A和B在光滑的水平面上相向运动,已知他们的质量分别为则它们属于弹性正碰后的速度是:

上例由碰撞过程动量守恒、碰撞结束符合物理情景及弹性碰撞动能守恒得

出答案并不难.但既是弹性碰撞

,直接由结论1再结合碰后物理情景吻合的验证会

更快选出正确答案D。

例2下列各图所示的两质点碰撞前后的位移图象中,属于弹性碰撞

数列极限四则运算的两个易错占

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

数列极限四则运算的两个易错占

I

‘ l

20 0 0年弟 l期摘要数列极限的加、减与乘的运算法则能推广到有限个

数列的情况,但不能适用无限个数列的情况注意运用数列极限四则运算的前提条件。蜘 关键词极限有限个个

数列极限四则运算的两个易错占课本中对数列极限运算 绐出T四则运算法则 .这些浊则有两点应引起学生注意比如数列极限的加、溅与乘的运算法则能推广到有限个数列的情况 .但不能通 1无限个数列的情讨况另外,法刚指出:“若两个数列都有极限 .”这足运用数列极限四则运算的前提条件。【题】例

纽厂

,■聂狮 .

l求下列极限:、( l ( 1)i ̄ a r…- -

n

南 _ .

)

正确的解法:

由 o 于<+n— -

_-<一…一 ' -一 . .÷一

1

毳『l

n。

一一,1 1十

n=i— 0 n。 )由迫性知: n (一。 .一敛

‘+毒南错误的解法:L (1 i a ro

++ )。…悉一_ I. ._ )=Lm i l i ̄ lm.,

+

=…

+

一o o。+。 o+ -…

2求下列极限:、

(l4… ) 1i 4++ ) m( 1 (三++ 2 i三一… ) )解:1南极限四则运算法则知 (), I'、

原一 l【三+ l _『

“两个细则”总结

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

“两个细则”总结

一、简介

“两个细则”是华中电监局下发的规范电厂服务、维护电力系统的安全稳定运行、保证电能质量的管理条例,其中包括调峰、日发电计划、无功、PSS、AGC、一次调频等十三个考核项目,以及AGC、有偿无功、旋转备用、有偿调峰这四个有条件的补偿项目。自从2011年10月份开始正式实施“两个细则”以来,生产部多次组织人员进行学习交流、明确职责、制定考核奖励制度、收集现场数据、根据实际情况采取不同的措施,避免考核、争取补偿。

二、两个细则中主要的考核项目及如何避免考核

分析“两个细则”规定可以看出,考核的项目比较多,但是需要密切关注的有:调峰、日发电计划、无功、PSS、AGC、一次调频这六项,剩下的七项按要求执行,定期检查,发现问题及时整改即可。

其中AGC是应中调命令投入后才开始需要关注的,AGC五台机组都和中调做过联调试验,试验结果都还不错,以前#4机也有过AGC运行的经验,跟踪情况良好,加上最近两年我公司的机组基本没有投入过AGC,所以自实施以来没有考核数据。

一次调频因为电厂PMU装置没有改造完,部分数据没有上传,暂时不具备考核的条件,到2012年六月份以后省调将一次调频纳入考核,这将是我公司下半年“两个细则”重点需要关注的部