高等数学数列的极限知识点
“高等数学数列的极限知识点”相关的资料有哪些?“高等数学数列的极限知识点”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高等数学数列的极限知识点”相关范文大全或资料大全,欢迎大家分享。
1-2高等数学—数列的极限
第二节 数列的极限 一、概念的引入 二、数列的定义 三、数列的极限 四、数列极限的性质 五、小结
一、概念的引入1、割圆术: “割之弥细,所 失弥少,割之又 割,以至于不可 割,则与圆周合 体而无所失矣” ——刘徽播放
正六边形的面积 A1 正十二边形的面积 A2
R
正 6 2 n 1形的面积 An
A1 , A2 , A3 , , An ,
S
2、截丈问题: “一尺之棰,日截其半,万世不竭” 1 第一天截下的杖长为 X 1 ; 2 1 1 第二天截下的杖长总和为 X 2 2 ; 2 2
1 1 1 第n天截下的杖长总和为 X n 2 n ; 2 2 2 1 Xn 1 n 1 2
二、数列的定义定义:按自然数1,2,3, 编号依次排列的一列数
x1 , x 2 , , x n ,
(1)
称为无穷数列, 简称数列. 其中的每个数称为数 列的项, x n 称为通项(一般项).数列(1)记为{ x n } .例如
2,4,8, ,2 n , ;1 1 1 1 , , , , n , ; 2 4 8 2
{2 } 1 { n} 2
n
1, 1,1, , ( 1)
n 1
, ;
{( 1)
n 1
}
1
高等数学知识点重点
高等数学知识点重点
1 高等数学知识点总结 空间解析几何与向量代数
一、重点与难点
1、重点
①向量的基本概念、向量的线性运算、向量的模、方向角; ②数量积(就是个数)、向量积(就是个向量);(填空选择题中考察)
③几种常见的旋转曲面、柱面、二次曲面;(重积分求体积时画图需要)
④平面的几种方程的表示方法(点法式、一般式方程、三点式方程、截距式方程),两平面的夹角;(一般必考)
⑤空间直线的几种表示方法(参数方程、对称式方程、一般方程、两点式方程), 两直线的夹角、直线与平面的夹角;(一般必考)
空间解析几何与向量代数:
。
代表平行六面体的体积为锐角时,向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。
是向量在轴上的投影:点的距离:空间ααθθθ??,cos )(][..sin ,cos ,
,cos Pr Pr )(Pr ,cos Pr )()()(222222221212
1221221221c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a k j i b a c b b b a a a b a b a b a b a b a b a b a b a a j a j a a j
高等数学知识点归纳
第一讲: 一. 数列函数: 1. 类型:
极限与连续
(1)数列: *an f(n); *an 1 f(an) (2)初等函数:
(3)分段函数: *F(x)
f1(x)x x0 f(x)x x0
; *F(x) ;* ,,
ax x0 f2(x)x x0
(4)复合(含f)函数: y f(u),u (x) (5)隐式(方程): F(x,y) 0
(6)参式(数一,二):
x x(t)
y y(t)
(7)变限积分函数: F(x)
x
a
f(x,t)dt
(8)级数和函数(数一,三): S(x) 2. 特征(几何):
ax,x
nnn 0
(1)单调性与有界性(判别); (f(x)单调 x0,(x x0)(f(x) f(x0))定号) (2)奇偶性与周期性(应用).
3. 反函数与直接函数: y f(x) x f二. 极限性质:
1. 类型: *liman; *limf(x)(含x ); *limf(x)(含x x0 )
n
x
1
(y) y f 1(x)
x x0
2. 无穷小与无穷大(注: 无穷量): 3. 未定型:
0
,,1, ,0 ,00, 0 0
4. 性质: *有界性,
高等数学(函数与极限)
目 录
一、函数与极限 ················································································································2
1、集合的概念 ···········································································································2
2、常量与变量 ···········································································································3 2、函数 ·····················································································································4 3、函数的简单性态 ································
高等数学极限习题100道
x2sin设limf(x)?A,求证:limf(x)?A. 求极限limx?0sinxx?x0x?x01求极限limx1?sin. 求极限lim?cosln(1?x)?coslnx? x?0xx???1x 111arctan. 求极限lim 求极限limarctanx?arcsin 2x??x??x(1?ex)xx??x1?x2x?1求极限lim. 1x?0求数列的极限lim(sinn?1?sinn) n??2?2x求极限lim 2x设lim?(x)?u0,且?(x)?u0,又limf(u)?Ax?x0u?u0试证:limf??(x)??Ax?x0 设f(x)?x?1lnx试确定实数a,b之值,使得: 当x?a时,f(x)为无穷小;当x?b时,f(x)为无穷大。x设f(x)?,问:当x趋于何值时,f(x)为无穷小。 xtan2 若limf(x)?A,limg(x)?B,且B?Ax?x0x?x0证明:存在点x0的某去心邻域,使得在该邻域内 g(x)?f(x). 设limf(x)?A,试证明:x?x0对任意给定的??0,必存在正数?,使得对适含不等式0?x1?x0??;0?x2?x0??的一切x1、x2,都有f(x2)?f(x1)??成立。已
考研数学冲刺高等数学考试辅导主要知识点串讲
考研数学冲刺高等数学考试辅导主要知识点串讲
考研数学冲刺高等数学考试辅导主要知识点串讲
2014年考研大战还有一个月就将上演,考研数学冲刺复习,很多人认为就是大量做题,实质考生们应该回归教材,理清基本的知识点,梳理整个学科的知识框架。下面我们就为大家整理分享了考研最后一个月冲刺复习考研数学核心知识点总结,供大家参考。
从整个学科上来看,高数实际上是围绕着极限、导数和积分这三种基本的运算展开的。对于每一种运算,我们首先要掌握它们主要的计算方法;熟练掌握 计算方法后,再思考利用这种运算我们还可以解决哪些问题,比如会计算极限以后:那么我们就能解决函数的连续性,函数间断点的分类,导数的定义这些问题。这 样一梳理,整个高数的逻辑体系就会比较清晰。
1.极限部分
极限的计算方法很多,总结起来有十多种,这里我们只列出主要的:四则运算,等价无穷小替换,洛必达法则,重要极限,泰勒公式,中值定理,夹逼定 理,单调有界收敛定理。每种方法具体的形式教材上都有详细的讲述,考生可以自己回顾一下,不太清晰的地方再翻到对应的章节看一看。
会计算极限之后,我们来说说直接通过极限定义的基本概念:
通过极限,我们定义了函数的连续性:函数在处连续的定义是,根据极限的定义,我们知道该定义又等价于。
2018考研数学三高等数学常考知识点分享
2018考研数学三复习之高等数学常考知识点
来源:智阅网
高等数学是考研数学三中很重要的学科,也是考研数学三中常考的内容。所以,就让我们一起来了解一下高等数学的常考知识点吧!
1.函数、极限与连续:主要考查极限的计算或已知极限确定原式中的常数;讨论函数连续性和判断间断点类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数或确定方程在给定区间上有无实根。
2.一元函数微分学:主要考查导数与微分的定义;各种函数导数与微分的计算;利用洛比达法则求不定式极限;函数极值;方程的的个数;证明函数不等式;与中值定理相关的证明;最大值、最小值在物理、经济等方面实际应用;用导数研究函数性态和描绘函数图形;求曲线渐近线。
3.一元函数积分学:主要考查不定积分、定积分及广义积分的计算;变上限积分的求导、极限等;积分中值定理和积分性质的证明;定积分的应用,如计算旋转面面积、旋转体体积、变力作功等。
4.多元函数微分学:主要考查偏导数存在、可微、连续的判断;多元函数和隐函数的一阶、二阶偏导数;多元函数极值或条件极值在与经济上的应用;二元连续函数在有界平面区域上的最大值和最小值。此外,数学一还要求会计算方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。
2018考研数学三高等数学常考知识点分享
2018考研数学三复习之高等数学常考知识点
来源:智阅网
高等数学是考研数学三中很重要的学科,也是考研数学三中常考的内容。所以,就让我们一起来了解一下高等数学的常考知识点吧!
1.函数、极限与连续:主要考查极限的计算或已知极限确定原式中的常数;讨论函数连续性和判断间断点类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数或确定方程在给定区间上有无实根。
2.一元函数微分学:主要考查导数与微分的定义;各种函数导数与微分的计算;利用洛比达法则求不定式极限;函数极值;方程的的个数;证明函数不等式;与中值定理相关的证明;最大值、最小值在物理、经济等方面实际应用;用导数研究函数性态和描绘函数图形;求曲线渐近线。
3.一元函数积分学:主要考查不定积分、定积分及广义积分的计算;变上限积分的求导、极限等;积分中值定理和积分性质的证明;定积分的应用,如计算旋转面面积、旋转体体积、变力作功等。
4.多元函数微分学:主要考查偏导数存在、可微、连续的判断;多元函数和隐函数的一阶、二阶偏导数;多元函数极值或条件极值在与经济上的应用;二元连续函数在有界平面区域上的最大值和最小值。此外,数学一还要求会计算方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。
高等数学公式(极限与导数)
高等数学中有关极限、无穷小和导数的公式
两个重要极限
第一个重要极限:lim
推论:lim
第二个重要极限:lim(1 )x e
x
sinx
1
x 0x
tanxarcsinxarctanx 1,lim 1,lim 1
x 0x 0x 0xxx
1
x
1其他形式:lim(1 n e,n n
推论:lim
lim 1 x e
x 0
1x
loga(1 x)1ln(1 x)
lim 1
x 0x 0xlnax
ax 1ex 1lim lna lim 1 x 0x 0xx
高等数学中有关极限、无穷小和导数的公式
等价无穷小
当x 1时,lnx x 1(这个等价无穷小很有用。) 证明:lnx ln[1 (x 1)] x 1( x 1 0)
高等数学中有关极限、无穷小和导数的公式
导 数
高等数学中有关极限、无穷小和导数的公式
高阶导数
函数f(x)在点x0注 如果函数f(x)在点x0处的二阶可导,则函数f(x)在点x0的某个邻域内必须有连续的导数
f (x)。
两个函数乘积的高阶导数(莱布尼茨公式):
uv
n
k n k k
Cnuv k 0
n
或
(uv)
(n)
n(n 1)...(n k 1)(n k)(k)
v
k!k 0
n
高等数学中有关极限、无穷小和导数的公式
求导法则和方法
经济数学1(高等数学,极限与连续)
经济数学
前言 一、“高等数学”的学科定位
“高等数学”,是以极限论为工具研究变 量和变量关系的学科,又称为微积分,在数学专业课中又称为“数学分析”。
研究的对象是函数,基础是实数域,运用分析的工具是极限。
以下我们根据课程的特点和内容从不同角度对其进行说明。
1、高等数学 初等数学,
2、高等数学又称为“微积分”,其主要内容是微分学和积分学两部分。而它们的基础是函数与极限,我们再根据其对象是一元函数和多元函数将其分为一元微积分和多元微积分。
3、同样是微积分,还有层次的高低问题。 4、在内容的系统上,其主线是运用极限论
工具对函数的各特性进行讨论。这里在内容体系展开上就有一个认识上的矛盾。因为极限论从认识的角度看要比函数的微积分难得多。若一开始就深入的徘徊在极限理论之中,必然偏离我们高数的学习目的。为了解决这个矛盾,我们尽量地简化了极限论的分析,只是罗列了一些要用的必需结论(这也是与数学分析的主要区别之一)。但是对它的简单化将使我们在运用极限这个工具时,感到有点把握不住,这是很正常的。希望大家一定要正确对待这一难关。我们的处理是在后继内容的一些具体问题中去逐步地完善对极限的认识,可能到后面的总结时,才能较好地体会和归纳出它的实