高等数学上册课后题答案详解

“高等数学上册课后题答案详解”相关的资料有哪些?“高等数学上册课后题答案详解”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高等数学上册课后题答案详解”相关范文大全或资料大全,欢迎大家分享。

高等数学上册课后答案(同济大学第六版)

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

高数上册答案

高等数学第六版上册课后习题答案

第一章:

习题1 1

1 设A ( 5) (5 ) B [ 10 3) 写出A B A B A\B及A\(A\B)的表达式

解 A B ( 3) (5 )

A B [ 10 5)

A\B ( 10) (5 ) A\(A\B) [ 10 5)

2 设A、B是任意两个集合 证明对偶律 (A B)C AC BC 证明 因为

x (A B)C x A B x A或x B x AC或x BC x AC BC 所以 (A B)C AC BC

3 设映射f X Y A X B X 证明 (1)f(A B) f(A) f(B)

(2)f(A B) f(A) f(B) 证明 因为

y f(A B) x A B 使f(x) y

(因为x A或x B) y f(A)或y f(B)

y f(A) f(B) 所以 f(A B) f(A) f(B) (2)因为

y f(A B) x A B 使f(x) y (因为x A且x B) y f(A)且y f

高等数学上册导学案8397449

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

高等数学(上)期末复习指导 09年12月

高等数学上册导学案 目 录

第一部分 常考题型与相关知识提要 1 第二部分 理工大学01—08级高等数学(上)期末试题集(8套题) 18 01—08级高等数学(上)期末试题试题参考解答 26

第三部分 高等数学(上)期末模拟练习题(5套题) 39

模拟试题参考解答 46

第四部分 09级高等数学(上)考前最后冲刺题(1套题) 57

第一部分 常考题型与相关知识提要

题型一 求极限的题型 相关知识点提要 须熟记下列极限: (1)基本的极限:

?0, q?1? 1)limqn??, 2)limna?1,(a?0),limnn?1 1, q?1n??n??n???发散, q?1,q??1??0,n?m?anxn?

2016尔雅高等数学上答案

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

高等数学上

1.1 高等数学学习谈 1

微积分是高等数学的重要组成,其理论是由()和莱布尼兹完成的。 我的答案: 第一空: 牛顿 2

高等数学也称为微积分,它是几门课程的总称,具有高度的( )、严密的( )以及和广泛的( )。 我的答案: 第一空: 抽象性 第二空: 逻辑性 第三空: 应用性

1.2 微积分的基本思想和方法

1.2.1 经典问题——变速直线运动的瞬时速度问题 1

一物体做变速直线运动,它的位置函数是s=t2,t=2时该物体的瞬时速度为( )。

我的答案: 第一空: 4 2

一物体做变速直线运动,它的位置函数是s=2t^2-1,t=2时该物体的瞬时速度为( )。 我的答案: 第一空: 8

2 1.2.2 经典问题——变速直线运动的位移问题 1

物体在一条直线上运动,如果在相等的时间里位移( ),这种运动就叫做变速直线运动。简而言之,物体( )的直线运动称为变速直线运动。 正确答案: 第一空: 不等 第二空: 运动速度改变 2

一物体做变速直线运动,它的速度函数是v=2t,在[1,2]时间段内该物体的位移为( )。 正确答案: 第一空: 3

1.2.3 微积分的基本思想及构成 1

微积分是研究函数的( )、( )以及

《高等数学》不定积分课后习题详解

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

篇一:高等数学第四章不定积分习题

第四章不 定 积 分

4 – 1不定积分的概念与性质

一.填空题

1.若在区间上F?(x)?f(x),则F(x)叫做f(x)在该区间上的一个f(x)的 所有原函数叫做f(x)在该区间上的__________。

2.F(x)是f(x)的一个原函数,则y=F(x)的图形为?(x)的一条_________. 3.因为

d(arcsinx)?

1?x2

dx

,所以arcsinx是______的一个原函数。

4.若曲线y=?(x)上点(x,y)的切线斜率与x成正比例,并且通过点A(1,6)和B(2,-9),则该曲线方程为__________ 。 二.是非判断题

1. 若f?x?的某个原函数为常数,则f?x??0. [ ] 2. 一切初等函数在其定义区间上都有原函数. [ ] 3.

3

??f?x?dx???f??x?dx. [ ]

?

4. 若f?x?在某一区间内不连续,则在这个区间内f?x?必无原函数. [ ] 5.y?ln?ax?与y?lnx是同一函数的原函数. [ ] 三.单项选择题

1.c为任意常数,且F'(x)=f(x),下式成立的有 。(A)?F'(x)dx?f(x)+c;(B)?f(x)dx=F(x)+c;

《高等数学》不定积分课后习题详解

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

不定积分 内容概要

名称 不 设f(x), x?I,若存在函数F(x),使得对任意x?I均定 有 F?(x)?f(x) 积 或dF(x)?分 f(x)dx,则称F(x)为f(x)的一个原函数。 主要内容 f(x)的全部原函数称为f(x)在区间I上的不定积分,的 记为 概 ?f(x)dx?F(x)?C 为f(x)的原函数,则F(x)?G(x)?C。故不定积分的表达式不唯一。 (1)若f(x)连续,则必可积;(2)若F(x),G(x)均念 注:性 性质1:d?f(x)dx??f(x)或d??f(x)dx??f(x)dx; ?????dx质 性质2:?F?(x)dx?F(x)?C或?dF(x)?F(x)?C; 性质3:?[?f(x)??g(x)]dx???f(x)dx???g(x)dx,?,?为非零常数。 计 设f(u)的 原函数为F(u),u??(x)可导,则有算 第一换换元公式: 不 方 元 定 法 积分法 积 分 (凑微分法) ?f(?(x))??(x)dx??f(?(x))d?(x)?F(?(x))?C 第二类 设换元积 分法 x??(t)单调、可导且导数不为零,有原函数F(t)?1f[?(t)]?

《高等数学》不定积分课后习题详解

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

不定积分 内容概要

名称 不 设f(x), x?I,若存在函数F(x),使得对任意x?I均定 有 F?(x)?f(x) 积 或dF(x)?分 f(x)dx,则称F(x)为f(x)的一个原函数。 主要内容 f(x)的全部原函数称为f(x)在区间I上的不定积分,的 记为 概 ?f(x)dx?F(x)?C 为f(x)的原函数,则F(x)?G(x)?C。故不定积分的表达式不唯一。 (1)若f(x)连续,则必可积;(2)若F(x),G(x)均念 注:性 性质1:d?f(x)dx??f(x)或d??f(x)dx??f(x)dx; ?????dx质 性质2:?F?(x)dx?F(x)?C或?dF(x)?F(x)?C; 性质3:?[?f(x)??g(x)]dx???f(x)dx???g(x)dx,?,?为非零常数。 计 设f(u)的 原函数为F(u),u??(x)可导,则有算 第一换换元公式: 不 方 元 定 法 积分法 积 分 (凑微分法) ?f(?(x))??(x)dx??f(?(x))d?(x)?F(?(x))?C 第二类 设换元积 分法 x??(t)单调、可导且导数不为零,有原函数F(t)?1f[?(t)]?

高等数学答案与详解 2 广东

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

高等数学答案与详解

第二章 导数与微分

习题2-1

1.解:当自变量从x变到x1时,y相应地从f(x)=8x变到f(x1)=8x1,所以导数

y lim

f(x1) f(x)x1 x

lim

8(x1 x)x1 x

8.

x1 xx1 x

2.解:由导数的定义可知

f (x) lim

f(x h) f(x)

h

a(x h) b(x h) c (ax bx c)

h

2axh h bh

h

22

2

h 0

lim。

h 0

lim

h 0

2ax b

3.解:(cosx) lim

cos(x x) cosx

x

2sin

lim

x 0

2x x x

sin

x

x 0

-limsin

x 0

2x x2

sin lim

x 0

x

sinx x2

4. 解:(1)不能,(1)与f(x)在x0的取值无关,当然也就与f(x)在x0是否连续无关,故是f (x0)存在的必要条件而非充分条件. (2)可以,与导数的定义等价. (3)可以, 与导数的定义等价. 5. 解:(1)5x ; (2)

4

1216

x

32

; (3)

227

15

x

7

(4)

1xln

13

; (5)x

56

; (6)2e

2x

.

2

6. 解:物体在t时刻的运动速度为:V(t) S (T) 3t(m/s),故物体

《高等数学》不定积分课后习题详解

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

不定积分 内容概要

名称 不 设f(x), x?I,若存在函数F(x),使得对任意x?I均定 有 F?(x)?f(x) 积 或dF(x)?分 f(x)dx,则称F(x)为f(x)的一个原函数。 主要内容 f(x)的全部原函数称为f(x)在区间I上的不定积分,的 记为 概 ?f(x)dx?F(x)?C 为f(x)的原函数,则F(x)?G(x)?C。故不定积分的表达式不唯一。 (1)若f(x)连续,则必可积;(2)若F(x),G(x)均念 注:性 性质1:d?f(x)dx??f(x)或d??f(x)dx??f(x)dx; ?????dx质 性质2:?F?(x)dx?F(x)?C或?dF(x)?F(x)?C; 性质3:?[?f(x)??g(x)]dx???f(x)dx???g(x)dx,?,?为非零常数。 计 设f(u)的 原函数为F(u),u??(x)可导,则有算 第一换换元公式: 不 方 元 定 法 积分法 积 分 (凑微分法) ?f(?(x))??(x)dx??f(?(x))d?(x)?F(?(x))?C 第二类 设换元积 分法 x??(t)单调、可导且导数不为零,有原函数F(t)?1f[?(t)]?

同济大学第六版高等数学上册课后答案全集

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

高等数学第六版上册课后习题答案

第一章

习题1-1

1. 设A =(-∞, -5)?(5, +∞), B =[-10, 3), 写出A ?B , A ?B , A \B 及A \(A \B )的表达式.

解 A ?B =(-∞, 3)?(5, +∞),

A ?

B =[-10, -5),

A \

B =(-∞, -10)?(5, +∞),

A \(A \

B )=[-10, -5).

2. 设A 、B 是任意两个集合, 证明对偶律: (A ?B )C =A C ?B C .

证明 因为

x ∈(A ?B )C ?x ?A ?B ? x ?A 或x ?B ? x ∈A C 或x ∈B C ? x ∈A C ?B C , 所以 (A ?B )C =A C ?B C .

3. 设映射f : X →Y , A ?X , B ?X . 证明

(1)f (A ?B )=f (A )?f (B );

(2)f (A ?B )?f (A )?f (B ).

证明 因为

y ∈f (A ?B )??x ∈A ?B , 使f (x )=y

?(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B )

? y ∈f (A )?f (B ),

所以 f (A ?B )=

自测题(1-7章附参考答案)-高等数学上册

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

第一章 函数与极限

一、 选择题:

8、设a0,b0?0,则当( )时有

x?11.函数y?1?x?arccos的定义域是( )

2(A)x?1; (B)?3?x?1; (C)(?3,1); (D)xx?1?x?3?x?1.

a0xm?a1xm?1?........?ama0 lim? . x??bxn?bxn?1?.........?bb001n (A)m?n ; (B)m?n ;

(C)m?n ; (D)m,n任意取 . 9、设??????x?3,?4?x?02.函数?2的定义域是( )

?x?1,0?x?3(A)?4?x?0;(B)?3;(C)(?4,3); (D)x?4?x?0?x0?x?3. 3、函数y?xcosx?sinx是( ) (A)偶函数; (B)奇函数;

(C)非奇非偶函数;(D)奇偶函数. 4、函数f(x)?1?cos?x?1,?1?x?0,则limf(x)?( )

x?0?x,0?x?1x( ) x (A)-1 ; (B)1 ; (C)0 ; (D)不存在 . 10、limx?0????(A)1; (B)-1;(C)0; (D)不存在. 二、求下列函数的定义域:

1、y?sin(2x?1)?arctanx;