高等数学上册课后题答案详解
“高等数学上册课后题答案详解”相关的资料有哪些?“高等数学上册课后题答案详解”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高等数学上册课后题答案详解”相关范文大全或资料大全,欢迎大家分享。
高等数学上册课后答案(同济大学第六版)
高数上册答案
高等数学第六版上册课后习题答案
第一章:
习题1 1
1 设A ( 5) (5 ) B [ 10 3) 写出A B A B A\B及A\(A\B)的表达式
解 A B ( 3) (5 )
A B [ 10 5)
A\B ( 10) (5 ) A\(A\B) [ 10 5)
2 设A、B是任意两个集合 证明对偶律 (A B)C AC BC 证明 因为
x (A B)C x A B x A或x B x AC或x BC x AC BC 所以 (A B)C AC BC
3 设映射f X Y A X B X 证明 (1)f(A B) f(A) f(B)
(2)f(A B) f(A) f(B) 证明 因为
y f(A B) x A B 使f(x) y
(因为x A或x B) y f(A)或y f(B)
y f(A) f(B) 所以 f(A B) f(A) f(B) (2)因为
y f(A B) x A B 使f(x) y (因为x A且x B) y f(A)且y f
高等数学上册导学案8397449
高等数学(上)期末复习指导 09年12月
高等数学上册导学案 目 录
第一部分 常考题型与相关知识提要 1 第二部分 理工大学01—08级高等数学(上)期末试题集(8套题) 18 01—08级高等数学(上)期末试题试题参考解答 26
第三部分 高等数学(上)期末模拟练习题(5套题) 39
模拟试题参考解答 46
第四部分 09级高等数学(上)考前最后冲刺题(1套题) 57
第一部分 常考题型与相关知识提要
题型一 求极限的题型 相关知识点提要 须熟记下列极限: (1)基本的极限:
?0, q?1? 1)limqn??, 2)limna?1,(a?0),limnn?1 1, q?1n??n??n???发散, q?1,q??1??0,n?m?anxn?
2016尔雅高等数学上答案
高等数学上
1.1 高等数学学习谈 1
微积分是高等数学的重要组成,其理论是由()和莱布尼兹完成的。 我的答案: 第一空: 牛顿 2
高等数学也称为微积分,它是几门课程的总称,具有高度的( )、严密的( )以及和广泛的( )。 我的答案: 第一空: 抽象性 第二空: 逻辑性 第三空: 应用性
1.2 微积分的基本思想和方法
1.2.1 经典问题——变速直线运动的瞬时速度问题 1
一物体做变速直线运动,它的位置函数是s=t2,t=2时该物体的瞬时速度为( )。
我的答案: 第一空: 4 2
一物体做变速直线运动,它的位置函数是s=2t^2-1,t=2时该物体的瞬时速度为( )。 我的答案: 第一空: 8
2 1.2.2 经典问题——变速直线运动的位移问题 1
物体在一条直线上运动,如果在相等的时间里位移( ),这种运动就叫做变速直线运动。简而言之,物体( )的直线运动称为变速直线运动。 正确答案: 第一空: 不等 第二空: 运动速度改变 2
一物体做变速直线运动,它的速度函数是v=2t,在[1,2]时间段内该物体的位移为( )。 正确答案: 第一空: 3
1.2.3 微积分的基本思想及构成 1
微积分是研究函数的( )、( )以及
《高等数学》不定积分课后习题详解
篇一:高等数学第四章不定积分习题
第四章不 定 积 分
4 – 1不定积分的概念与性质
一.填空题
1.若在区间上F?(x)?f(x),则F(x)叫做f(x)在该区间上的一个f(x)的 所有原函数叫做f(x)在该区间上的__________。
2.F(x)是f(x)的一个原函数,则y=F(x)的图形为?(x)的一条_________. 3.因为
d(arcsinx)?
1?x2
dx
,所以arcsinx是______的一个原函数。
4.若曲线y=?(x)上点(x,y)的切线斜率与x成正比例,并且通过点A(1,6)和B(2,-9),则该曲线方程为__________ 。 二.是非判断题
1. 若f?x?的某个原函数为常数,则f?x??0. [ ] 2. 一切初等函数在其定义区间上都有原函数. [ ] 3.
3
??f?x?dx???f??x?dx. [ ]
?
4. 若f?x?在某一区间内不连续,则在这个区间内f?x?必无原函数. [ ] 5.y?ln?ax?与y?lnx是同一函数的原函数. [ ] 三.单项选择题
1.c为任意常数,且F'(x)=f(x),下式成立的有 。(A)?F'(x)dx?f(x)+c;(B)?f(x)dx=F(x)+c;
《高等数学》不定积分课后习题详解
不定积分 内容概要
名称 不 设f(x), x?I,若存在函数F(x),使得对任意x?I均定 有 F?(x)?f(x) 积 或dF(x)?分 f(x)dx,则称F(x)为f(x)的一个原函数。 主要内容 f(x)的全部原函数称为f(x)在区间I上的不定积分,的 记为 概 ?f(x)dx?F(x)?C 为f(x)的原函数,则F(x)?G(x)?C。故不定积分的表达式不唯一。 (1)若f(x)连续,则必可积;(2)若F(x),G(x)均念 注:性 性质1:d?f(x)dx??f(x)或d??f(x)dx??f(x)dx; ?????dx质 性质2:?F?(x)dx?F(x)?C或?dF(x)?F(x)?C; 性质3:?[?f(x)??g(x)]dx???f(x)dx???g(x)dx,?,?为非零常数。 计 设f(u)的 原函数为F(u),u??(x)可导,则有算 第一换换元公式: 不 方 元 定 法 积分法 积 分 (凑微分法) ?f(?(x))??(x)dx??f(?(x))d?(x)?F(?(x))?C 第二类 设换元积 分法 x??(t)单调、可导且导数不为零,有原函数F(t)?1f[?(t)]?
《高等数学》不定积分课后习题详解
不定积分 内容概要
名称 不 设f(x), x?I,若存在函数F(x),使得对任意x?I均定 有 F?(x)?f(x) 积 或dF(x)?分 f(x)dx,则称F(x)为f(x)的一个原函数。 主要内容 f(x)的全部原函数称为f(x)在区间I上的不定积分,的 记为 概 ?f(x)dx?F(x)?C 为f(x)的原函数,则F(x)?G(x)?C。故不定积分的表达式不唯一。 (1)若f(x)连续,则必可积;(2)若F(x),G(x)均念 注:性 性质1:d?f(x)dx??f(x)或d??f(x)dx??f(x)dx; ?????dx质 性质2:?F?(x)dx?F(x)?C或?dF(x)?F(x)?C; 性质3:?[?f(x)??g(x)]dx???f(x)dx???g(x)dx,?,?为非零常数。 计 设f(u)的 原函数为F(u),u??(x)可导,则有算 第一换换元公式: 不 方 元 定 法 积分法 积 分 (凑微分法) ?f(?(x))??(x)dx??f(?(x))d?(x)?F(?(x))?C 第二类 设换元积 分法 x??(t)单调、可导且导数不为零,有原函数F(t)?1f[?(t)]?
高等数学答案与详解 2 广东
高等数学答案与详解
第二章 导数与微分
习题2-1
1.解:当自变量从x变到x1时,y相应地从f(x)=8x变到f(x1)=8x1,所以导数
y lim
f(x1) f(x)x1 x
lim
8(x1 x)x1 x
8.
x1 xx1 x
2.解:由导数的定义可知
f (x) lim
f(x h) f(x)
h
a(x h) b(x h) c (ax bx c)
h
2axh h bh
h
22
2
h 0
lim。
h 0
lim
h 0
2ax b
3.解:(cosx) lim
cos(x x) cosx
x
2sin
lim
x 0
2x x x
sin
x
x 0
-limsin
x 0
2x x2
sin lim
x 0
x
sinx x2
4. 解:(1)不能,(1)与f(x)在x0的取值无关,当然也就与f(x)在x0是否连续无关,故是f (x0)存在的必要条件而非充分条件. (2)可以,与导数的定义等价. (3)可以, 与导数的定义等价. 5. 解:(1)5x ; (2)
4
1216
x
32
; (3)
227
15
x
7
;
(4)
1xln
13
; (5)x
56
; (6)2e
2x
.
2
6. 解:物体在t时刻的运动速度为:V(t) S (T) 3t(m/s),故物体
《高等数学》不定积分课后习题详解
不定积分 内容概要
名称 不 设f(x), x?I,若存在函数F(x),使得对任意x?I均定 有 F?(x)?f(x) 积 或dF(x)?分 f(x)dx,则称F(x)为f(x)的一个原函数。 主要内容 f(x)的全部原函数称为f(x)在区间I上的不定积分,的 记为 概 ?f(x)dx?F(x)?C 为f(x)的原函数,则F(x)?G(x)?C。故不定积分的表达式不唯一。 (1)若f(x)连续,则必可积;(2)若F(x),G(x)均念 注:性 性质1:d?f(x)dx??f(x)或d??f(x)dx??f(x)dx; ?????dx质 性质2:?F?(x)dx?F(x)?C或?dF(x)?F(x)?C; 性质3:?[?f(x)??g(x)]dx???f(x)dx???g(x)dx,?,?为非零常数。 计 设f(u)的 原函数为F(u),u??(x)可导,则有算 第一换换元公式: 不 方 元 定 法 积分法 积 分 (凑微分法) ?f(?(x))??(x)dx??f(?(x))d?(x)?F(?(x))?C 第二类 设换元积 分法 x??(t)单调、可导且导数不为零,有原函数F(t)?1f[?(t)]?
同济大学第六版高等数学上册课后答案全集
高等数学第六版上册课后习题答案
第一章
习题1-1
1. 设A =(-∞, -5)?(5, +∞), B =[-10, 3), 写出A ?B , A ?B , A \B 及A \(A \B )的表达式.
解 A ?B =(-∞, 3)?(5, +∞),
A ?
B =[-10, -5),
A \
B =(-∞, -10)?(5, +∞),
A \(A \
B )=[-10, -5).
2. 设A 、B 是任意两个集合, 证明对偶律: (A ?B )C =A C ?B C .
证明 因为
x ∈(A ?B )C ?x ?A ?B ? x ?A 或x ?B ? x ∈A C 或x ∈B C ? x ∈A C ?B C , 所以 (A ?B )C =A C ?B C .
3. 设映射f : X →Y , A ?X , B ?X . 证明
(1)f (A ?B )=f (A )?f (B );
(2)f (A ?B )?f (A )?f (B ).
证明 因为
y ∈f (A ?B )??x ∈A ?B , 使f (x )=y
?(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B )
? y ∈f (A )?f (B ),
所以 f (A ?B )=
自测题(1-7章附参考答案)-高等数学上册
第一章 函数与极限
一、 选择题:
8、设a0,b0?0,则当( )时有
x?11.函数y?1?x?arccos的定义域是( )
2(A)x?1; (B)?3?x?1; (C)(?3,1); (D)xx?1?x?3?x?1.
a0xm?a1xm?1?........?ama0 lim? . x??bxn?bxn?1?.........?bb001n (A)m?n ; (B)m?n ;
(C)m?n ; (D)m,n任意取 . 9、设??????x?3,?4?x?02.函数?2的定义域是( )
?x?1,0?x?3(A)?4?x?0;(B)?3;(C)(?4,3); (D)x?4?x?0?x0?x?3. 3、函数y?xcosx?sinx是( ) (A)偶函数; (B)奇函数;
(C)非奇非偶函数;(D)奇偶函数. 4、函数f(x)?1?cos?x?1,?1?x?0,则limf(x)?( )
x?0?x,0?x?1x( ) x (A)-1 ; (B)1 ; (C)0 ; (D)不存在 . 10、limx?0????(A)1; (B)-1;(C)0; (D)不存在. 二、求下列函数的定义域:
1、y?sin(2x?1)?arctanx;