函数与反函数单调性一样吗
“函数与反函数单调性一样吗”相关的资料有哪些?“函数与反函数单调性一样吗”相关的范文有哪些?怎么写?下面是小编为您精心整理的“函数与反函数单调性一样吗”相关范文大全或资料大全,欢迎大家分享。
函数的单调性、凹凸性、反函数
函数的单调性、凹凸性、反函数
C单调性:能准确判断初等函数复合后的函数的单调性,能根据数形
结合解题。
d凹凸性:理解函数图像凹凸性的代数意义,原理就是比较曲线上不
重合两点值域的算术平均数与两点中点的函数值的大小。
比较f?x1??2f?x2??x?x2?与f?1?的大小2??
反函数的几个性质:
1.原函数与反函数单调性一致; 2.原函数与反函数关于y=x对称;
3.原函数的值域是反函数的定义域,原函数的定义域是反函数的值域
?(3a?1)x?4a,x?1f(x)???)上的减函数,那么a的取值范围是 例1.已知 是(??,?logx,x?1a??1??11??1?1? A(0,1) B ?0,? C ?,? D ?,3737??????解析:分段函数是R上的严格递减函数要满足两个条件: 1:分段函数的每一段是递减的; 2:左段函数的最小值?右段函数的最大值;
?(3a?1)x?4a,x?1?f(x)??是R上的严格递减函数,logx,x?1a??3a?1?011???a??0?a?173?(3a?1)?1?4a?log1a? ?
例2. 已知函数f(x)?3?axa?1(a?1),
函数单调性学案
2.1.3函数的单调性(学案)
开封二十五中学 唐红星 一、三维目标
(一)、知识与技能
1、理解函数单调性的概念,会根据函数的图像判断函数的单调性; 2、能够根据函数单调性的定义证明函数在某一区间上的单调性。 (二)、过程与方法
通过对函数单调性定义的探究,渗透数形结合的思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力。 (三)情感态度与价值观
通过问题链的引入,激发学生学习数学的兴趣,锻炼克服困难的意志,激励学习数学的自信心。
二、教学重点
领会函数单调性的实质,明确单调性是一个局部概念。
三、教学难点
利用函数单调性的定义证明具体函数的单调性。
四、教学过程
(一)创设情景,引入新课
引例1、为了预测北京奥运会开幕式当天的天气情况,数学小组研究了2002年到2007
年每年这一天的天气情况,如图是北京市2007年8月8日一天24小时内气温随时间的变化曲线图:
请回答下列问题:
1.当天的最高(最低)气温出现的时刻 ? 2.在某时刻的温度? 3.什么时段温度持续升高(降低)?
引例2、画出函数 y=x,
函数单调性学案
2.1.3函数的单调性(学案)
开封二十五中学 唐红星 一、三维目标
(一)、知识与技能
1、理解函数单调性的概念,会根据函数的图像判断函数的单调性; 2、能够根据函数单调性的定义证明函数在某一区间上的单调性。 (二)、过程与方法
通过对函数单调性定义的探究,渗透数形结合的思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力。 (三)情感态度与价值观
通过问题链的引入,激发学生学习数学的兴趣,锻炼克服困难的意志,激励学习数学的自信心。
二、教学重点
领会函数单调性的实质,明确单调性是一个局部概念。
三、教学难点
利用函数单调性的定义证明具体函数的单调性。
四、教学过程
(一)创设情景,引入新课
引例1、为了预测北京奥运会开幕式当天的天气情况,数学小组研究了2002年到2007
年每年这一天的天气情况,如图是北京市2007年8月8日一天24小时内气温随时间的变化曲线图:
请回答下列问题:
1.当天的最高(最低)气温出现的时刻 ? 2.在某时刻的温度? 3.什么时段温度持续升高(降低)?
引例2、画出函数 y=x,
剖析函数单调性
函数的单调性是高中数学教材中的重要内容,应深刻理解单调性的概念及定义的内涵、性质。现就笔者在教学中遇到的问题加以归纳,希望对广大中学生朋友们有所帮助。
高中数学第一册(上) P:63-64页(人教社、2006年11月第2版)
一般地:设函数f(x)的定义域为Ⅰ:
如果对于属于定义域Ⅰ内的某个区间上的任意两个自变量的值 , ,当 < 时,都有f( )<f( ),那么就说f(x)在这个区间上是增函数;如果对于属于定义域Ⅰ内某个区间的任意两个自变量的值 , ,当 < 时,都有f( )>f( ),那么就说在这个区间上是减函数。
如果函数y=f(x)在某个区间是增函数或减函数,那么就说函数y=f(x)在这个区间具有(严格的)单调性,这一区间叫做y=f(x)的单调区间。
对函数的单调性定义的理解,应掌握以下几点:
① 单调性是函数在某一区间上的整体性质,定义中的 、 在这一区间内具有任意性,证明时不可用特殊值代替。函数的单调性是函数在其定义域上的一个局部性质,一个函数在不同的区间上可以有不同的单调性。
② 函数的单调性只能在定义域内讨论,且谈函数的单调性时必须指明对应的区间。函数的单调区间一定是其定
函数的单调性说课稿
函数的单调性说课稿
发布:佚名 时间:2008-12-23 10:37:00 来源:京翰教育中心 录入:行者 人气:4566
【文字:大 小】
函数的单调性说课稿
一、教学内容的分析
1.教材的地位和作用
首先,从单调性知识本身来讲.学生对于函数单调性的学习共分为三个阶段,第一阶段是在初中学习了一次函数、二次函数、反比例函数图象的基础上对增减性有一个初步的感性认识;第二阶段是在高一进一步学习函数单调性的严格定义,从数和形两个方面理解单调性的概念;第三阶段则是在高三利用导数为工具研究函数的单调性.高一单调性的学习,既是初中学习的延续和深化,又为高三的学习奠定基础.
其次,从函数角度来讲. 函数的单调性是学生学习函数概念后学习的第一个函数性质,也是第一个用数学符号语言来刻画的概念.函数的单调性与函数的奇偶性、周期性一样,都是研究自变量变化时,函数值的变化规律;学生对于这些概念的认识,都经历了直观感受、文字描述和严格定义三个阶段,即都从图象观察,以函数解析式为依据,经历用符号语言刻画图形语言,用定量分析解释定性结果的过程.因此,函数单调性的学习为进一步学习函数的其它性质提供了方法依据.
最后,从学科角度来讲.函数的单调性是学习不等式、极限、导数等其
函数的单调性说课稿
函数的单调性说课稿
发布:佚名 时间:2008-12-23 10:37:00 来源:京翰教育中心 录入:行者 人气:4566
【文字:大 小】
函数的单调性说课稿
一、教学内容的分析
1.教材的地位和作用
首先,从单调性知识本身来讲.学生对于函数单调性的学习共分为三个阶段,第一阶段是在初中学习了一次函数、二次函数、反比例函数图象的基础上对增减性有一个初步的感性认识;第二阶段是在高一进一步学习函数单调性的严格定义,从数和形两个方面理解单调性的概念;第三阶段则是在高三利用导数为工具研究函数的单调性.高一单调性的学习,既是初中学习的延续和深化,又为高三的学习奠定基础.
其次,从函数角度来讲. 函数的单调性是学生学习函数概念后学习的第一个函数性质,也是第一个用数学符号语言来刻画的概念.函数的单调性与函数的奇偶性、周期性一样,都是研究自变量变化时,函数值的变化规律;学生对于这些概念的认识,都经历了直观感受、文字描述和严格定义三个阶段,即都从图象观察,以函数解析式为依据,经历用符号语言刻画图形语言,用定量分析解释定性结果的过程.因此,函数单调性的学习为进一步学习函数的其它性质提供了方法依据.
最后,从学科角度来讲.函数的单调性是学习不等式、极限、导数等其
函数的单调性与导数3
1.3.1 函数的单调性与导数
6.已知f(x)=ex-ax-1.(1)求f(x)的 单调增区间;(2)若f(x)在定义域 R内单调递增,求a的取值范围; (3)是否存在a,使f(x)在(-∞,0] 上单调递减,在[0,+∞)上单调递增? 若存在,求出a值;若不存在,说明理 解析:f′(x)=ex-a. 由. (1)若a≤0,f′(x)=ex-a≥0恒成立, 即f(x)在R上递增. 若a>0,ex-a≥0,∴ex≥a,x≥lna. ∴f(x)的单调递增区间为(lna,+∞).
(2)∵f(x)在R内单调递增,∴f′(x)≥0在R上恒成立
∴ex-a≥0,即a≤ex在R上恒成立.∴a≤(ex)min,又∵ex>0,∴a≤0. (3)解法一由题意知ex-a≤0在(-∞,0]上恒成立. ∴a≥ex在(-∞,0]上恒成立. ∵ex在(-∞,0]上为增函数.
∴x=0时,ex最大为1.∴a≥1.同理可知ex-a≥0在[0,+∞)上恒成立. ∴a≤ex在[0,+∞)上恒成立.∴a≤1,∴a=1. 解法二由题意知,x=0为f(x)的极小值点. ∴f′(0)=0,即e0-a=0,∴a=1.
例4:方程根的问题1 求证:方
函数的单调性说课稿
函数的单调性说课稿
发布:佚名 时间:2008-12-23 10:37:00 来源:京翰教育中心 录入:行者 人气:4566
【文字:大 小】
函数的单调性说课稿
一、教学内容的分析
1.教材的地位和作用
首先,从单调性知识本身来讲.学生对于函数单调性的学习共分为三个阶段,第一阶段是在初中学习了一次函数、二次函数、反比例函数图象的基础上对增减性有一个初步的感性认识;第二阶段是在高一进一步学习函数单调性的严格定义,从数和形两个方面理解单调性的概念;第三阶段则是在高三利用导数为工具研究函数的单调性.高一单调性的学习,既是初中学习的延续和深化,又为高三的学习奠定基础.
其次,从函数角度来讲. 函数的单调性是学生学习函数概念后学习的第一个函数性质,也是第一个用数学符号语言来刻画的概念.函数的单调性与函数的奇偶性、周期性一样,都是研究自变量变化时,函数值的变化规律;学生对于这些概念的认识,都经历了直观感受、文字描述和严格定义三个阶段,即都从图象观察,以函数解析式为依据,经历用符号语言刻画图形语言,用定量分析解释定性结果的过程.因此,函数单调性的学习为进一步学习函数的其它性质提供了方法依据.
最后,从学科角度来讲.函数的单调性是学习不等式、极限、导数等其
1.3.1函数的单调性与导数
3.3数导研在究函中的数用应3.3.1函数单调性与导 数
v 观察、一P2: h h2t( ) 49.t 2 6 5t. 1 0h (' t) .9t 8 65.
0a
bt
0 a t 运b动从起员跳最高到点,以及从最点高入水到 两这时间的段运动态状什有区别?么1()运动从员跳到最高点,起离面水的度高h随时间的增t加而 加增即,h(t是增函)数。应地,v相t() h '(t ) 0 .2)(最高点到入从水运,员动离水面的高h随时度间t增加的而减小 ,h即()是t减数。函应地,v(t相) h (t') 0.
思考:这种况是情否有一具性呢般?
y
y xy
y x2
xO
xO
y
y x3
y
y 1xx
OxO
y函数单调加增f ( x>0)
f(x) 0
=数函单减调少f ( x<) 0 f x)<( f0f x)(<0 ( x)<0f ( x)<0
f (x)>0f x()>0f (x)0>0x
Ox
数单函性的判调定定:一理地般函,的单数性调与其导数的函正有如负下系关:
某在区间(个 a b,内 如)果f ´x) > 0,(函数则在个这间区
06函数的单调性与最值
06函数的单调性与最值
函数的单调性与最值
06函数的单调性与最值
知识网络定义 函数的概念 三要素 表示 定义域 对应法则 值域 单调性 对称性 函数的 基本性质 奇偶性 周期性 最值 函数常见的 几种变换 基本初等 函数
列表法 解析法 图象法 观察法、判别式法、分离常数法、 单调性法、最值法、重要不等式、 三角法、图象法、线性规划等
1.求单调区间:定义法、导数法、用已知函数的单调性. 2.复合函数单调性:同增异减. 1.先看定义域是否关于原点对称,再看f(-x)=f(x)还是-f(x). 2.奇函数图象关于原点对称,若x=0有意义,则f(0)=0. 3.偶函数图象关于y轴对称,反之也成立. f (x+T)=f (x);周期为T的奇函数有: f (T)=f (T/2)=f (0)=0. 二次函数、基本不等式,对勾函数、三角函数有界性、 线性规划、导数、利用单调性、数形结合等. 平移变换、对称变换、翻折变换、伸缩变换.
函 数
正(反)比例函数; 一次(二次)函数; 幂、指、对函数;单调性:同增异减 定义、图象、 性质和应用
复合函数抽象函数 函数与方程 函数的应用 常见函数模型
赋值法函数零点、二分法、一元二次方程根的分布
幂、指、对函数模型;分段函数;对