三重积分的两种计算方法
“三重积分的两种计算方法”相关的资料有哪些?“三重积分的两种计算方法”相关的范文有哪些?怎么写?下面是小编为您精心整理的“三重积分的两种计算方法”相关范文大全或资料大全,欢迎大家分享。
三重积分的计算方法种种
三重积分的计算方法种种
摘要:三重积分的计算一直是教学中的重点和难点,本文根据三重积分的被积函数的不同性质,总结了三重积分计算的不同的处理方法,有的方法是选择合适的坐标系;有的方法是利用公式,做变量代换;还有的方法是利用被积函数在积分区域中的特殊性质。这些方法可以简化三重积分的计算。 关键词:三重积分 变量代换 对称性
Several Methods of Calculation of Triple Integral
Abstract: Calculation of triple integral is a important and difficult part in teaching work, in this paper,
according to the different character of integrand of triple integral, we give different calculation methods of triple integral, by choosing suitable coordinate system, and the variable replacement formula, the
三重积分的计算方法小结与例题
方法
三重积分的计算方法介绍:
三重积分的计算是化为三次积分进行的。其实质是计算一个定积分(一重积分)和一个二重积分。从顺序看:
如果先做定积分
z2
f(x,y,z)dz
,再做二重积分
D
F(x,y)d
,就是“投
z1
影法”,也即“先一后二”。步骤为:找 及在xoy面投影域D。多D上一点(x,y)“穿线”确定z的积分限,完成了“先一”这一步(定积分);进而按二重积分的计算步骤计算投影域D上的二重积分,完成“后二”这一步。
z2
f(x,y,z)dv
[
D
z1
f(x,y,z)dz]d
如果先做二重积分
Dz
f(x,y,z)d
再做定积分 F(z)dz,就是“截面
c1
c2
法”,也即“先二后一”。步骤为:确定 位于平面z即z [c
1
c1与z c2
之间,
z
,c2],过
z作平行于xoy面的平面截 ,截面D。区域D的边
z
z
界曲面都是z的函数。计算区域D上的二重积分
Dz
f(x,y,z)d
,完成
了“先二”这一步(二重积分);进而计算定积分 F(z)dz,完成“后
c1
c2
c2
一”这一步。
f(x,y,z)dv
[
c1
Dz
f(x,y,z)d ]dz
当被积函数f(z)仅为z的函数(与x,y无关),且D的面积 (z)
z
容易求出时,“截面法”尤
三重积分的计算方法小结与例题
方法
三重积分的计算方法介绍:
三重积分的计算是化为三次积分进行的。其实质是计算一个定积分(一重积分)和一个二重积分。从顺序看:
如果先做定积分
z2
f(x,y,z)dz
,再做二重积分
D
F(x,y)d
,就是“投
z1
影法”,也即“先一后二”。步骤为:找 及在xoy面投影域D。多D上一点(x,y)“穿线”确定z的积分限,完成了“先一”这一步(定积分);进而按二重积分的计算步骤计算投影域D上的二重积分,完成“后二”这一步。
z2
f(x,y,z)dv
[
D
z1
f(x,y,z)dz]d
如果先做二重积分
Dz
f(x,y,z)d
再做定积分 F(z)dz,就是“截面
c1
c2
法”,也即“先二后一”。步骤为:确定 位于平面z即z [c
1
c1与z c2
之间,
z
,c2],过
z作平行于xoy面的平面截 ,截面D。区域D的边
z
z
界曲面都是z的函数。计算区域D上的二重积分
Dz
f(x,y,z)d
,完成
了“先二”这一步(二重积分);进而计算定积分 F(z)dz,完成“后
c1
c2
c2
一”这一步。
f(x,y,z)dv
[
c1
Dz
f(x,y,z)d ]dz
当被积函数f(z)仅为z的函数(与x,y无关),且D的面积 (z)
z
容易求出时,“截面法”尤
关于求解三重积分的方法
根据给出的封闭曲面的形式判断积分区间,化三重积分为三次积分。
科技信息
高校理科研究
关孑求船三重积分帕方法襄樊学院数计学院陶爽卢方芳[摘要]根据给出的封闭曲面的形式判断积分区间,化三重积分为三次积分。 [关键词】积分区域最大投影柱坐标球面坐标 1出的曲形如 z f x )=, .给面=1,, x ) ( yz Y令£ )如 y, y= )得到一个关于 xy,的方程,是封闭曲面围成的区域在 X Y平面上的最大投影,也是 x满足的范围,然后根据所得到的 xy O, y, 的关系判断 f 2 l的大小。, f 例 1化三重积分 f,z xy z ( Y ) dd为三次积分, x,d积分区域 Q是由曲面 z x 22 z2 X围成的闭区域。= Z y及=一2+ 解根据 x 2 2 x有 x 1因为得到的是最大投影,以 xy 2 y一 y,+所,满足的是 x y≤1 22,+根据该式可知≤2 X则一2,,
故闭区域在平面上的最大投影区域 D (, I+2】据 y得=(y x y≤1根 x)z, 2≤1出、 =[≥z z 2≥x y而根据所给的曲面方程形式,+,可以使用柱坐标变换,
令{p S 0 p+ f C≤<∞ X O= f ≥≥ 22~== z xy
关于求解三重积分的方法
根据给出的封闭曲面的形式判断积分区间,化三重积分为三次积分。
科技信息
高校理科研究
关孑求船三重积分帕方法襄樊学院数计学院陶爽卢方芳[摘要]根据给出的封闭曲面的形式判断积分区间,化三重积分为三次积分。 [关键词】积分区域最大投影柱坐标球面坐标 1出的曲形如 z f x )=, .给面=1,, x ) ( yz Y令£ )如 y, y= )得到一个关于 xy,的方程,是封闭曲面围成的区域在 X Y平面上的最大投影,也是 x满足的范围,然后根据所得到的 xy O, y, 的关系判断 f 2 l的大小。, f 例 1化三重积分 f,z xy z ( Y ) dd为三次积分, x,d积分区域 Q是由曲面 z x 22 z2 X围成的闭区域。= Z y及=一2+ 解根据 x 2 2 x有 x 1因为得到的是最大投影,以 xy 2 y一 y,+所,满足的是 x y≤1 22,+根据该式可知≤2 X则一2,,
故闭区域在平面上的最大投影区域 D (, I+2】据 y得=(y x y≤1根 x)z, 2≤1出、 =[≥z z 2≥x y而根据所给的曲面方程形式,+,可以使用柱坐标变换,
令{p S 0 p+ f C≤<∞ X O= f ≥≥ 22~== z xy
三重积分
§5.三重积分
数学分析中常用的曲面和它对应的方程(温馨提示:请大家务必记住常用结论!) 1.球面:x2?y2?z2?a2?a?0?表示以原点为球心,半径为a的球面。
2.柱面:平行于定直线L并沿定曲线C移动的动直线所形成的曲面叫做柱面。定曲线C叫做柱面的准线,动直线叫做柱面的母线。
?f(x,y)?0一般地,方程f(x,y)?0表示以曲线C:?为准线,母线平行于z轴的柱面。
z?0?类似可以写出方程f(y,z)?0和f(z,x)?0表示的曲面。 注:当准线是直线时,柱面退化为平面。
几种常用的柱面(柱面名称与准线名称相对应)
x2y2(1)2?2?1表示母线平行于z轴的椭圆柱面。特别地,当a?b时,它表示母线平行
ab于z轴的圆柱面。这里的定直线L就是z轴。
(2)y2?2px?p?0?表示母线平行于z轴的抛物柱面。
x2z2(3)-2?2?1表示母线平行y轴的双曲柱面。
ab
3.旋转曲面:平面曲线C绕该平面上一条定直线L旋转而形成的曲面,叫做旋转曲面。 其中平面曲线C叫做旋转曲面的母线,定直线L叫做旋转曲面的轴。
例如平面曲线C:??f(y,z)?0,绕z轴旋转一周所得到的旋转曲面的方程为
?x?0f(?x2?y2,z)?0。
记忆口诀:绕
刚性桩复合地基中两种不同的计算方法
复合地基中两种不同的分析计算方法
李娜
(华南理工大学 土木与交通学院 广东 广州 510640)
摘要:提出了现有的两种复合地基设计分析方法,即传统的倒楼盖法,及基于有限元分析软件优化的面弹簧法,通过实际工程来对比分析此两种设计方法的不同适应条件,及其计算结果的对比,最后提出基于有限元分析的面弹簧法更接近于实际工程情况,更为安全,并具有较好地技术效果和经济效益。
关键词:复合地基;倒楼盖法;面弹簧法;非线性。 中图分类号: 文献标识码:A
0 引言
复合地基的理论与应用是目前土木工程中比较活跃的研究领域。近十多年来,复合地基技术得到了较大的发展。因此在实际工程中对于复合地基的设计方法的不断改进和完善也有了越来越多的方法。
1复合地基设计方法
目前在复合地基的设计过程中,使用比较多的有两种方法:基于弹性的倒楼盖法和基于非线性有限元分析的面弹簧法,这两种方法考虑不同的设计假设前提,对复合地基进行设计,以下详细介绍此两种方法在复合地基中的应用,以及各自的优缺点。
1.1倒楼盖法
复合地基中对于筏板基础结构[1],底板的受力由上部结构荷载和地基土的共同作用决定,但由于计算手段的局限性,地基土对底板的实际作用往往难以真实模拟,传统设计方法采
三重积分
§5.三重积分
数学分析中常用的曲面和它对应的方程(温馨提示:请大家务必记住常用结论!) 1.球面:x2?y2?z2?a2?a?0?表示以原点为球心,半径为a的球面。
2.柱面:平行于定直线L并沿定曲线C移动的动直线所形成的曲面叫做柱面。定曲线C叫做柱面的准线,动直线叫做柱面的母线。
?f(x,y)?0一般地,方程f(x,y)?0表示以曲线C:?为准线,母线平行于z轴的柱面。
z?0?类似可以写出方程f(y,z)?0和f(z,x)?0表示的曲面。 注:当准线是直线时,柱面退化为平面。
几种常用的柱面(柱面名称与准线名称相对应)
x2y2(1)2?2?1表示母线平行于z轴的椭圆柱面。特别地,当a?b时,它表示母线平行
ab于z轴的圆柱面。这里的定直线L就是z轴。
(2)y2?2px?p?0?表示母线平行于z轴的抛物柱面。
x2z2(3)-2?2?1表示母线平行y轴的双曲柱面。
ab
3.旋转曲面:平面曲线C绕该平面上一条定直线L旋转而形成的曲面,叫做旋转曲面。 其中平面曲线C叫做旋转曲面的母线,定直线L叫做旋转曲面的轴。
例如平面曲线C:??f(y,z)?0,绕z轴旋转一周所得到的旋转曲面的方程为
?x?0f(?x2?y2,z)?0。
记忆口诀:绕
应纳税所得额有两种计算方法
应纳税所得额有两种计算方法,一是直接法,二是间接法。
1、直接计算法:
应纳税所得额=收入总额-不征税收入-免税收入-各项扣除金额-弥补亏损
2、间接计算法:
应纳税所得额=会计利润总额±纳税调整项目金额
利润总额
利润总额=营业利润+投资净收益+营业外收入-营业外支出
营业利润=主营业务利润+其他业务利润
主营业务利润=主营业务收入-主营业务成本-期间费用-营业税金
其他业务利润=其他业务收入-其他业务成本-营业税金
纳税调增项目
职工福利费、工会经费、职工教育经费。企业发生的职工福利费支出,不超过工资、薪金总额14%的部分准予扣除,超过的部分不得扣除;企业拨缴的工会经费,不超过工资、薪金总额2%的部分准予扣除,超过的部分不得扣除;企业发生的职工教育经费支出,不超过工资、薪金总额2.5%的部分准予扣除,超过的部分准予结转以后纳税年度扣除。(必须实际发生)
保险费。企业依照国务院有关主管部门或者省级人民政府规定的范围和标准为职工缴纳的“五险一金”,准予扣除;企业为投资者或者职工支付的补充养老保险费、补充医疗保险费,在国务院财政、税务主管部门规定的范围和标准内,5%准予扣除;企业参加财产保险,按照规定缴纳的保险费,准予扣除。企业为投资者或者职工支付的商业保险费,不得扣
二重积分的计算方法
重庆三峡学院数学分析课程论文
二重积分的计算方法
院 系 数学与统计学院
专 业 数学与应用数学(师范) 姓 名 年 级 2010级 学 号
指导教师 刘学飞
2014年5月
二重积分的计算方法
(重庆三峡学院数学与统计学院10级数本1班)
摘 要 :本文总结出了求二重积分的几种方法,比如用定义、公式、定理、性质求极限. 关键词 :函数极限;计算方法;洛必达法则; 四则运算
引言
二重积分的概念和计算是多元函数微积分学的重要部分,在几何、物理、力学等方面有着重
要的应用.重积分是由一元函数积分推广而来的,但与一元函数相比,计算重积分的难度除了与被
积函数有关外,还与积分区域的特点有关,计算重积分的主要思想方法是化重积分为累次积分.求
二重积分的方法很多且非常灵活,本文归纳了二重积分计算的一些常见方法和技巧.
1. 预备知识
1.1二重积分的定义
设f?x,y?是定