列车制动原理
“列车制动原理”相关的资料有哪些?“列车制动原理”相关的范文有哪些?怎么写?下面是小编为您精心整理的“列车制动原理”相关范文大全或资料大全,欢迎大家分享。
列车制动技术及发展(1)
第五章 制动技术
5.1 概述
5.1.1 制动技术的发展概况
制动技术包括制动控制技术和基础制动技术,是重载货车提速的关键技术。制动控制技术是与产生和输出制动动力,控制、调节和保持车辆制动力等有关的技术。基础制动技术是与传递和放大制动动力,实现和保持制动力,转换和消耗车辆动能等有关的技术。我国铁路货车以压缩空气作为制动动力源,控制系统采用空气制动机,包括制动控制阀、空重车调整装置、副风缸等辅助风缸和制动缸等。基础制动系统则由机械传动装置、闸瓦间隙调整器和闸瓦等组成。
我国铁路货车制动技术的进步经历了三个历史阶段。
GK型制动机及其两级手动空重车调整装置、中磷铸铁闸瓦是我国铁路货车最早的重载、提速技术,其影响一直持续了近40年。在K型制动机基础上,按照我国轴重增大,速度提高的要求进行改进的GK制动机不仅可与直径356mm的大制动缸配套,而且实现了空重车调整,因此,提高了重车的制动率;制动缸的三段变速升压特性也有利于缓解较长编组列车的纵向力。我国自主研发的中磷铸铁闸瓦不仅提高了耐磨性,也提高了高速区的摩擦系数。这些技术既提高了制动能力,又改善了制动性能,不仅使货车载重提高到50t级、60t级,也使货车速度提高到了80km/h,基本满足了牵引重
列车牵引制动复习题
《列车牵引计算》学生复习资料A 填空题
1.列车和列车运行速度是铁路运输工作中最重要的指标。对于一定功率的机车,在线路条件不变的情况下,若要列车运行速度快则牵引质量要相应地;若要增加列车牵引质量,则列车运行速度要相应地;因此,最有利的牵引质量和运行速度的确定,需要进行和等方面的分析比较。
2.列车附加阻力可分为阻力、阻力和阻力。
3.列车在2‰坡道上下坡运行时,则列车的单位坡道附加阻力为。
4.轮对的制动力不得轮轨间的粘着力,否则,就会发生闸瓦和车轮现象。
5.作用于列车上的合力的大小和方向,决定着列车的运动状态。在牵引工况下,当合 力零时,列车加速运行;当合力零时,列车减速运行;当合力零时,列车匀速运行。 6.在某工况下,当列车所受单位合力为零时对应的运行速度,为列车的速度,列车将运行。 7.列车运行时间的长短取决于列车运行和作用在列车上的大小。
8.牵引质量是按列车在限制坡道上运行时,最后能以匀速过顶为标准来计算的。
9.在计算列车的基本阻力时,当货车装载货物不足标记载重50%的车辆按计算;当达到标记载重50%的车辆按计算。
10.轮轨之间的最大静摩擦力称为机车。
11、列车制动距离是自司机施行制动开始到列车为止,所运行的距离。 12、列
列车制动力计算公式
列车制动力计算
1,紧急制动计算
?列车总制动力 B??h?Kh(kN)
式中
?Kh------全列车换算闸瓦压力的总和,kN;
?h---换算摩擦系数;
1000?h?KhB?1000?(N/kN) ?列车单位制动力的计算公式 b?(P?G)?g(P?G)?g其中
?Kh(P?G)?g??h(N/kN),则b?1000?h??h
式中 P?G------------列车的质量,t; ?h---换算摩擦系数;
?h------------------列车制动率;
?Kh------全列车换算闸瓦压力的总和,kN;
2,列车常用制动计算 ?c? 由此可得 bc式中
bc?1 b??c?b?1000?h?h?c(N/kN)
?c-----常用制动系数
bc-------列车单位制动力
表1 常用制动系数 p1为列车管空气压力
列车管减压量r/kPa 旅客列车 货物列车 50 60 70 80 90 100 110 120 1
制动原理
第二章
第一节 制动一般概念及其在铁路运输中的意义
人为地施加于运动物体,使其减速(含防止其加速)或停止运动或施加于静止物体,保持其静止状态。这种作用被称为制动作用。实现制动作用的力称为制动力。解除制动作用的过程称为缓解。
制动装置即指机车或车辆上能产生制动作用的零、部件所组成的一整套机构。通常包括:制动机、基础制动装置、手制动机。装于机车上能实现制动作用和缓解作用的装置称为机车制动装置,装于车辆上能实现制动作用和缓解作用的装置称为车辆制动装置。列车制动装置由机车制动装置与所牵引的所有的车辆制动装置组合而成。
制动机,即制动装置中受司机直接控制的部分。通常包括从制动软管连接器至制动缸的一整套机构。基础制动装置,即制动装置中用于传递、扩大制动力的一整套杆件连接装置。通常包括:车体基础制动装置和转向架基础制动装置。
手制动机,即制动装置中以人力作为产生制动力的原动力部分。制动距离,即制动时从机车的自动制动阀置于制动位起,到列车停车,列车所走过的距离。
列车制动作用的产生一般是由机车上的制动阀手把置制动位,制动作用由机车制动机产生制动作用起,沿列车纵向由前及后车辆制动机逐一产生制动作用。制动作用沿列车长度方向由前及后的传递现象称为“制动波”。制动波
浅谈地铁制动控制与列车冲动
浅谈地铁制动控制与列车冲动
摘 要:地铁车辆根据牵引、制动指令完成运行控制,需结合不同的制动指令形式及特点,设计出制动指令的生成系统及指令传输系统。我们要根据地铁车辆配置的制动系统特性,研究合适混合制动控制策略,从而实现列车优良的制动性能。
关键词:地铁车辆;制动控制系统;设计
随着城市化进程的加快,城市内交通日益拥堵,因此如何缓解城市交通拥堵问题成为摆在人们面前的重要课题。地铁可以有效缓解道路拥堵的问题,并且可以扩展城市的发展空间,目前我国已建成和在建地铁的城市有30多个,本文分析的地铁车辆车体采用铝合金材料,设计最高运行速度为80km/h,列车构造速度为90km/h,列车为六辆编组,三辆动车三辆拖车的配置方式。制动系统作为列车运行的安全保障,必须严格遵循故障导向安全的原则。
1、地铁制动控制系统
沈阳地铁制动系统采用克诺尔公司的EP2002制动控制系统,这套系统有别于高速动车组采用的集成式制动控制系统,采用分散式控制,即以每个转向架为单位设置单个制动控制单元。此系统将常用制动阀、紧急制动阀、防滑保护功能的阀以及执行制动控制功能和制动管理功能的电子设备模块式地集成在一起组成网关阀或智能阀,分别安装在其控制的转向架附近的车体底架上,这两
列车牵引与制动作业参考答案
《列车牵引与制动》作业参考答案
一、名词解释:
1.换算摩擦系数:不随闸瓦压力改变的假定的闸瓦摩擦系数。 2.黏着系数:黏着力与车轮钢轨间垂直载荷之比。
3.机车牵引性能曲线:表示机车轮周牵引力(纵轴)与运行速度(横轴)相互关系的曲线,通常由试验得到。 4.(制动机的)间接作用:列车管的风压和主活塞的动作直接控制的是作用室风压,然后再通过作用室风压和第二活塞的动作控制机车(车辆)的制动缸。
5.(制动机的)三压力机构:三压力机构的主活塞的动作与否决定于三种压力的平衡与否,工作风缸压力(定压弹簧)、制动管压力,制动缸压力。
二、问答题:
1.粘着系数的影响因素有哪些?
答:粘着系数的影响因素主要有两个:列车运行速度和车轮和钢轨的表面状况。
轮轨间表面状态包括:干湿情况、脏污程度、是否有锈、是否撒砂以及砂的数量和品质等等。随着制动过程中列车速度的降低,粘着系数要增大。
2.制动的实质是什么?
答:制动的实质可以从能量和作用力两个不同的观点来看。
能量的观点:将列车的动能变成别的能量或转移走。
作用力的观点:制动装置产生与列车运行方向相反的力,是列车尽快减速或停车。
3.简述附加阻力的内容及其意义。
答:列车在线路上运行时受到的额外阻力,如坡
关于我国重载列车制动系统发展趋势的分析与探讨
中图分类号: 密 级: UDC: 本校编号:
工 程 硕 士 学 位 论 文
论文题目:关于我国重载列车制动
系统发展趋势的分析与探讨
研究生姓名: 学号:
学校指导教师姓名: 职称: 教授 企业指导教师姓名: 职称: 高级工程师
申请学位工程领域名称:
论文提交日期: 论文答辩日期:
独创性声明
本人声明所呈交的学位论文是本人在导师指导下进行的研究工作和取得的研究成果,除了文中特别加以标注和致谢之处外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含获得 兰州交通大学 或其他教育机构的学位或证书而使用过的材料。与我一同工作的同志对本研究所做的任何贡
二次谐波制动比率差动的原理
二次谐波制动比率差动的原理
摘要:对国内几起微机型主变差动保护误动原因分析,对新建变电站、运行中变电站、改造变电站主变差动保护误动原因,提出了防范措施。
关键词:差动保护;误动;暂态特性;线路纵差保护
电力系统中,主变是承接电能输送主要设备,作为主设备主保护微机型纵联差动(简称纵差或差动)保护,不断改进,还存“原因不明”误动作情况,这将造成主变非正常停运,影响大面积区供电,是造成系统振荡,对电力系统供电稳定运行是很不利。对新建变电站、运行中变电站、改造变电站主变差动保护误动原因进行分析,并提出了防止主变差动误动对策。
1主变差动保护
主变差动保护一般包括:差动速断保护、比率差动保护、二次(五次)谐波制动比率差动保护,哪种保护功能差动保护,其差动电流都是主变各侧电流向量和到,主变正常运行保护区外部故障时,该差动电流近似为零,当出现保护区内故障时,该差动电流增大。现以双绕组变压器为例进行说明。
1.1比率差动保护动作特性
比率差动保护动作特性见图1。当变压器轻微故障时,例如匝间短路圈数很少时,不带制动量,使保护变压器轻微故障时具有较高灵敏度。而较严重区外故障时,有较大制动量,提高保护可靠性。
二次谐波制动比率差动的原理
二次谐波制动比率差动的原理
摘要:对国内几起微机型主变差动保护误动原因分析,对新建变电站、运行中变电站、改造变电站主变差动保护误动原因,提出了防范措施。
关键词:差动保护;误动;暂态特性;线路纵差保护
电力系统中,主变是承接电能输送主要设备,作为主设备主保护微机型纵联差动(简称纵差或差动)保护,不断改进,还存“原因不明”误动作情况,这将造成主变非正常停运,影响大面积区供电,是造成系统振荡,对电力系统供电稳定运行是很不利。对新建变电站、运行中变电站、改造变电站主变差动保护误动原因进行分析,并提出了防止主变差动误动对策。
1主变差动保护
主变差动保护一般包括:差动速断保护、比率差动保护、二次(五次)谐波制动比率差动保护,哪种保护功能差动保护,其差动电流都是主变各侧电流向量和到,主变正常运行保护区外部故障时,该差动电流近似为零,当出现保护区内故障时,该差动电流增大。现以双绕组变压器为例进行说明。
1.1比率差动保护动作特性
比率差动保护动作特性见图1。当变压器轻微故障时,例如匝间短路圈数很少时,不带制动量,使保护变压器轻微故障时具有较高灵敏度。而较严重区外故障时,有较大制动量,提高保护可靠性。
二次谐波制动比率差动的原理
二次谐波制动比率差动的原理
摘要:对国内几起微机型主变差动保护误动原因分析,对新建变电站、运行中变电站、改造变电站主变差动保护误动原因,提出了防范措施。
关键词:差动保护;误动;暂态特性;线路纵差保护
电力系统中,主变是承接电能输送主要设备,作为主设备主保护微机型纵联差动(简称纵差或差动)保护,不断改进,还存“原因不明”误动作情况,这将造成主变非正常停运,影响大面积区供电,是造成系统振荡,对电力系统供电稳定运行是很不利。对新建变电站、运行中变电站、改造变电站主变差动保护误动原因进行分析,并提出了防止主变差动误动对策。
1主变差动保护
主变差动保护一般包括:差动速断保护、比率差动保护、二次(五次)谐波制动比率差动保护,哪种保护功能差动保护,其差动电流都是主变各侧电流向量和到,主变正常运行保护区外部故障时,该差动电流近似为零,当出现保护区内故障时,该差动电流增大。现以双绕组变压器为例进行说明。
1.1比率差动保护动作特性
比率差动保护动作特性见图1。当变压器轻微故障时,例如匝间短路圈数很少时,不带制动量,使保护变压器轻微故障时具有较高灵敏度。而较严重区外故障时,有较大制动量,提高保护可靠性。