常用积分公式推导
“常用积分公式推导”相关的资料有哪些?“常用积分公式推导”相关的范文有哪些?怎么写?下面是小编为您精心整理的“常用积分公式推导”相关范文大全或资料大全,欢迎大家分享。
常用积分公式
常 用 积 分 公 式
(一)含有ax?b的积分(a?0) 1.
dx1=?ax?balnax?b?C
2.(ax?b)dx=
??1(ax?b)??1?C(???1)
a(??1)3.
x1dx(ax?b?blnax?b)?C =?ax?ba2x21?1?dx=3?(ax?b)2?2b(ax?b)?b2lnax?b??C 4.?ax?ba?2?5.
dx1ax?b=??x(ax?b)blnx?C
6.
?dx1aax?b=??ln?C 22x(ax?b)bxbx7.
1bx(lnax?b?)?C dx=?(ax?b)2a2ax?b1b2x2)?C 8.?dx=3(ax?b?2blnax?b?aax?b(ax?b)29.
?dx11ax?b=?ln?C
x(ax?b)2b(ax?b)b2x(二)含有ax?b的积分
23(ax?b)?C ?3a2(3ax?2b)(ax?b)3?C 11.?xax?bdx=215a22(15a2x2?12abx?8b2)(ax?b)3?C 12.?xax?bdx=3105a10.
ax?bdx=13.
?2xdx=2(ax?2b)ax?b?C
3aax?b1
14.
?2x2(3a2x2?4abx?8b2)ax?b?C dx=31
常用的求导积分公式及解法
常用的求导积分公式及解法
常用的求导积分公式及解法 1.基本求导公式
⑴ (C) 0(C为常数)⑵ (xn) nxn 1;一般地,(x ) x 1。 特别地:(x) 1,(x2) 2x,()
1x
11
,。 (x) 2
x2x
⑶ (ex) ex;一般地,(ax) axlna (a 0,a 1)。 ⑷ (lnx)
11
(a 0,a 1)。 ;一般地,(logax)
xxlna
2.求导法则 ⑴ 四则运算法则
设f(x),g(x)均在点x可导,则有:(Ⅰ)(f(x) g(x)) f (x) g (x); (Ⅱ)(f(x)g(x)) f (x)g(x) f(x)g (x),特别(Cf(x)) Cf (x)(C为常数); (Ⅲ)(
f(x)f (x)g(x) f(x)g (x)1g (x)
,特别。 ) , (g(x) 0)() 22
g(x)g(x)g(x)g(x)
3.微分 函数y f(x)在点x处的微分:dy y dx f (x)dx 4、 常用的不定积分公式
1 1x2x32
xdx 1x C ( 1), dx x c, xdx 2 c, xdx 3(1) ;
4x3
xdx c 4
1axxxx
C (a 0,
公式推导:马歇尔-勒纳条件:假定、推导和说明
马歇尔-勒纳条件:假定、推导和说明1
马歇尔-勒纳条件研究一定前提条件下
本币对外贬值改善贸易收支的必要条件
1)假定:
局部均衡:进出口值由进出口商品的相对价格和进出口量决定,其他影响进
出口的因素,如消费者的收入、其他商品的价格、消费者的偏好等都不变; 贸易商品的供给弹性无穷大,进出口的价格不因需求的增加而上涨,也不因
需求的减少而下降(贬值国是小国);
不考虑资本流动,即国际收支等于贸易收支;
初始条件假定:假定贬值前贸易差额不大,进出口在贬值前基本平衡;
设出口商品的汇率弹性为 X,进口商品的汇率弹性为 M,即:
(1)
其中:
Δ:变化量,
X和M:分别表示出口数量和进口数量,
r:直接标价的汇率(一单位外币可兑换的本币数量)。本币对外贬值时,
r增加。
2)推导过程:
由于一国通常采用本币来记录国际收支,因此,我们讨论用本币表示国际收支的情况。
在没有国际资本流动的假定下,国际收支B等于贸易收支:
B PX rPM (2)
其中Px为出口商品以本币表示的价格,PM为进口商品以外币表示的价格,并假定这些价格不变。
如果本币贬值,即r增加时,dB>0,则本币贬值能起到改善贸易收支的作用。 对(2)式求导,得: 1本推导过程和说明的主要来源
积分公式
2.基本积分公式表
(1)∫0dx=C (2)(3)(4)(5)
=ln|x|+C
(m≠-1,x>0) (a>0,a≠1)
(6)∫cosxdx=sinx+C (7)∫sinxdx=-cosx+C (8)∫sec2xdx=tanx+C (9)∫csc2xdx=-cotx+C (10)∫secxtanxdx=secx+C (11)∫cscxcotxdx=-cscx+C (12)(13)注.(1)(2)
=arcsinx+C =arctanx+C 不是
在m=-1的特例.
=ln|x|+C ,ln后面真数x要加绝对值,原因是(ln|x|)' =1/x.
事实上,对x>0,(ln|x|)' =1/x;若x<0,则 (ln|x|)' =(ln(-x))' =(3)要特别注意积分.
下面我们要学习不定积分的计算方法,首先是四则运算.
3.不定积分的四则运算
根据微分运算公式 d(f(x)?g(x))=df(x)?dg(x)
与
.
的区别:前者是幂函数的积分,后者是指数函数的
d(kf(x))=kdf(x)
我们得不定积分的线性运算公式
(1)∫[f(x)±g(x)]dx=∫f(x)dx±∫g(x)dx (2)∫kf(x)dx=k∫f(x)dx,k是非零常数.
现在可利用这两个公式与基本积分公式来计算简单不定积分.
公式推导:马歇尔-勒纳条件:假定、推导和说明
马歇尔-勒纳条件:假定、推导和说明1
马歇尔-勒纳条件研究一定前提条件下
本币对外贬值改善贸易收支的必要条件
1)假定:
局部均衡:进出口值由进出口商品的相对价格和进出口量决定,其他影响进
出口的因素,如消费者的收入、其他商品的价格、消费者的偏好等都不变; 贸易商品的供给弹性无穷大,进出口的价格不因需求的增加而上涨,也不因
需求的减少而下降(贬值国是小国);
不考虑资本流动,即国际收支等于贸易收支;
初始条件假定:假定贬值前贸易差额不大,进出口在贬值前基本平衡;
设出口商品的汇率弹性为 X,进口商品的汇率弹性为 M,即:
(1)
其中:
Δ:变化量,
X和M:分别表示出口数量和进口数量,
r:直接标价的汇率(一单位外币可兑换的本币数量)。本币对外贬值时,
r增加。
2)推导过程:
由于一国通常采用本币来记录国际收支,因此,我们讨论用本币表示国际收支的情况。
在没有国际资本流动的假定下,国际收支B等于贸易收支:
B PX rPM (2)
其中Px为出口商品以本币表示的价格,PM为进口商品以外币表示的价格,并假定这些价格不变。
如果本币贬值,即r增加时,dB>0,则本币贬值能起到改善贸易收支的作用。 对(2)式求导,得: 1本推导过程和说明的主要来源
高等数学常用导数积分公式查询表好
08070141常用导数和积分公式
导数公式:
? (1) (C)?0 ? (3) (sinx)?cosx
???1?(x)??x (2)
? (4) (cosx)??sinx
(5)
(tanx)??sec2x (7) (secx)??secxtanx
(9)
(ax)??axlna (log1 (11)
ax)??xlna
(arcsinx)??1 (13)
1?x2
(arctanx)??1 (15)
1?x2
(cotx)???csc2x (cscx)???cscxcotx
(ex)??ex
(lnx)??1x,
(arccosx)???11?x2(arccotx)???11?x2
(6)
(8) (10) (12)
(14)
(16)
08070141常用导数和积分公式
基本积分表
?tgxdx??lncosx?C?ctgxdx?lnsinx?C?secxdx?lnsecx?tgx?C?cscxdx?lncscx?ctgx?Cdx1x?arctg?C?a2?x2aadx1x?a?ln?x2?a22ax?a?Cdx1a?x??a2?x22alna?x?Cdxx?arcsin?C?a2?x2a?2ndx
圆锥体积公式的推导
推导
第十课时
教学目标:
知识与能力:使学生理解求圆锥体积的计算公式.
过程与方法:会运用公式计算圆锥的体积.
情感态度和价值观::培养学生初步的空间观念和思维能力;让学生认识“转化”的思考方法。
教学重点
圆锥体体积计算公式的推导过程.
教学难点
正确理解圆锥体积计算公式.
教学过程:
一、铺垫孕伏
1、提问:
(1)圆柱的体积公式是什么?
(2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高.
2、导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题.(板书:圆锥的体积)
二、探究新知
(一)指导探究圆锥体积的计算公式.
1、教师谈话:
下面我们利用实验的方法来探究圆锥体积的计算方法.老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土.实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里.倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?
2、学生分组实验
学生汇报实验结果
①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满.
推导
②圆柱和圆锥的底面积不相等,高相等,
圆锥体积公式的推导
推导
第十课时
教学目标:
知识与能力:使学生理解求圆锥体积的计算公式.
过程与方法:会运用公式计算圆锥的体积.
情感态度和价值观::培养学生初步的空间观念和思维能力;让学生认识“转化”的思考方法。
教学重点
圆锥体体积计算公式的推导过程.
教学难点
正确理解圆锥体积计算公式.
教学过程:
一、铺垫孕伏
1、提问:
(1)圆柱的体积公式是什么?
(2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高.
2、导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题.(板书:圆锥的体积)
二、探究新知
(一)指导探究圆锥体积的计算公式.
1、教师谈话:
下面我们利用实验的方法来探究圆锥体积的计算方法.老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土.实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里.倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?
2、学生分组实验
学生汇报实验结果
①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满.
推导
②圆柱和圆锥的底面积不相等,高相等,
微积分-积分公式定理集锦
各种积分公式,公式大概分为四类,
北京理工大学
微积分-积分定理集锦
常用积分公式 定理
程功 2010/12/22
各种积分公式,公式大概分为四类,
定理
1.积分存在定理
1)当函数f(x)在区间 a,b 上连续时,称f(x)在区间 a,b 上可积.
2)设函数f(x)在区间 a,b 上有界,且只有有限个间断点,则f x 在区间 a,b 上可积。
2.性质:1 [f(x) g(x)]dx f(x)dx g(x)dx(此性质可以推广到有限多个函数求和的
a
a
a
bbb
情况)。
性质2. kf(x)dx k f(x)dx k为常数
a
a
bb
假设a c b,性质3: f(x)dx f(x)dx f(x)dx(定积分对于积分区间具有可加性)
a
a
c
bcb
性质4: 1 dx badx b a
a
b
性质5:如果在区间 a,b 上f(x) 0,则 f(x)dx 0 (a b)
a
b
推论(1):如果在区间[a,b]上,f(x) g x 则 f(x)dx g(x)dx(a b)
a
a
bb
推论(2):
b
a
f()xdx fx a b
a
b
性质6:设M及m分别是函数f x 上的最大值与最小值,则
m(b a) f(x)dx M(b a)
a
b
3.定积分中值定理
如果函数f x
T检验公式推导过程附例题
从正态总体N(μ1,σ)和N(μ2,σ)中分别抽取含量为n1和n2的样本,两样本均数差值X1 -X
2 服从正态分布
N(μ1-μ2,?),其中
X1-X2?=X1-X2?2(+1n11) ① n2其中①式中σX1 -
X2 为两样本均数差值的标准误,其估计值为
n?n11SX-X=SC2(+)=SC2(12) ② 12n1n2n1?n2其中②式中SC2为两样本合并的方差,其计算公式为:
?XSc?21?(X1)2/n1??X22?(?X2)2/n2n1?n2?22 ,则可用公式
③
如已计算出S1 和 S12③ 计算出
SX-X=S2x?S2x2=S21/n1?S22/n2④
1在H0:μ1=μ2=0的条件下,t的计算公式为:
t?|X1?X2|SX1?X2,ν=n1?n2?2⑤
例3-3 测得14名慢性支气管炎病人与11名健康人的尿中17酮类固醇(u mol/24h)排出量如下,试比较两组人的尿中17酮类固醇的排出量有无不同。
病人X1:10.05 18.75 18.99 15.94 13.96 17.22 14.69 15.10 9.42