离散数学左孝陵第六章课后答案
“离散数学左孝陵第六章课后答案”相关的资料有哪些?“离散数学左孝陵第六章课后答案”相关的范文有哪些?怎么写?下面是小编为您精心整理的“离散数学左孝陵第六章课后答案”相关范文大全或资料大全,欢迎大家分享。
离散数学左孝陵第六章
经典的教程
代数系统
第六章
格和布尔代数
§1格的概念 §2分配格 §3有补格 §4*布尔代数
经典的教程
§1格的概念1.偏序集合格《定义》格是一个偏序集合 L, ,其中每一对元素 a, b L 都拥有一个最小上界和最大下界。通常用a b 表示a和b的最大下界,用 a b 表示a和b的最小 GLB 上界。即: {a, b} a b
——称为元素a和b的保交运算, LUB{a, b} a b ——称为元素a和b的保联运算。
经典的教程
§1格的概念例:以下均为偏序集合格(D为整除关系,Sn为n的因 子集合)。
经典的教程
§1格的概念2.代数系统格 《定义》:设 L, 是一个格,如果在A上定义两个 二元运算 和 ,使得对于任意的a,b A,a b等 于a和b的最小上界,a b等于a和b的最大下界,那 么就称<L, , > 为由格 L, 所诱导的代数系统。
经典的教程
§1格的概念3.格的主要性质: (1)格的对偶原理 设
离散数学 第六章
第二部分 集合论
引言
集合是数学中最为基本的概念,又是数学各分支、自然科学及社会科学各领域的最普遍采用的描述工具。集合论是离散数学的重要组成部分,是现代数学中占有独特地位的一个分支。
G.康托尔是作为数学分支的集合论的奠基人。1870年前后,他关于无穷序列的研究导致集合论的系统发展。1874年他发表了关于实数集合不能与自然数集合建立一一对应的有名的证明。1878年,他引进了两个集合具有相等的“势”的概念。然而,朴素集合论中包含着悖论。第一个悖论是布拉利-福尔蒂的最大序数悖论。1901年罗素发现了有名的罗素悖论。1932年康托尔也发表了关于最大基数的悖论。 集合论的现代公理化开始于1908年E.策梅罗所发表的一组公理,经过A.弗兰克尔的加工,这个系统称为策梅罗-弗兰克尔集合论(ZF),其中包括1904年策梅罗引入的选择公理。另外一种系统是冯*诺伊曼-伯奈斯-哥德尔集合论。公理集合论中一个有名的猜想是连续统假设(CH)。K.哥德尔证明了连续统假设与策梅罗-弗兰克尔集合论的相容性,P.J.科恩证明了连续统假设与策梅罗-弗兰克尔集合论的独立性。现在把策梅罗-弗兰克尔集合论与选择公理一起称为ZFC系统。
本部分主要介绍朴素集合论的
左孝凌离散数学课后题答案
1-1,1-2 (1) 解:
a) 是命题,真值为T。 b) 不是命题。
c) 是命题,真值要根据具体情况确定。 d) 不是命题。
e) 是命题,真值为T。 f) 是命题,真值为T。 g) 是命题,真值为F。 h) 不是命题。 i) 不是命题。 (2) 解:
原子命题:我爱北京天安门。
复合命题:如果不是练健美操,我就出外旅游拉。 (3) 解:
a) (┓P ∧R)→Q b) Q→R c) ┓P d) P→┓Q (4) 解:
a)设Q:我将去参加舞会。R:我有时间。P:天下雨。
Q? (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。 b)设R:我在看电视。Q:我在吃苹果。 R∧Q:我在看电视边吃苹果。
c) 设Q:一个数是奇数。R:一个数不能被2除。
(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。 (5) 解:
a) 设P:王强身体很好。Q:王强成绩很好。P∧Q b) 设P:小李看书。Q:小李听音乐。P∧Q c) 设P:气候很好。Q:气候很热。P∨Q
d) 设P: a和b是偶数。Q:a+b是偶数。P→Q
e) 设P:四边形ABCD是平行四边形。Q :四边形ABCD的对边平行。P?Q
左孝凌离散数学课后题答案
1-1,1-2 (1) 解:
a) 是命题,真值为T。 b) 不是命题。
c) 是命题,真值要根据具体情况确定。 d) 不是命题。
e) 是命题,真值为T。 f) 是命题,真值为T。 g) 是命题,真值为F。 h) 不是命题。 i) 不是命题。 (2) 解:
原子命题:我爱北京天安门。
复合命题:如果不是练健美操,我就出外旅游拉。 (3) 解:
a) (┓P ∧R)→Q b) Q→R c) ┓P d) P→┓Q (4) 解:
a)设Q:我将去参加舞会。R:我有时间。P:天下雨。
Q? (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。 b)设R:我在看电视。Q:我在吃苹果。 R∧Q:我在看电视边吃苹果。
c) 设Q:一个数是奇数。R:一个数不能被2除。
(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。 (5) 解:
a) 设P:王强身体很好。Q:王强成绩很好。P∧Q b) 设P:小李看书。Q:小李听音乐。P∧Q c) 设P:气候很好。Q:气候很热。P∨Q
d) 设P: a和b是偶数。Q:a+b是偶数。P→Q
e) 设P:四边形ABCD是平行四边形。Q :四边形ABCD的对边平行。P?Q
离散数学-第六章集合代数课后练习习题及答案
第六章作业 评分要求:
1. 合计57分
2. 给出每小题得分(注意: 写出扣分理由). 3. 总得分在采分点1处正确设置.
一 有限集合计数问题
(合计20分: 每小题10分, 正确定义集合得4分, 方法与过程4分, 结果2分) 要求: 掌握集合的定义方法以及处理有限集合计数问题的基本方法
1 对60个人的调查表明, 有25人阅读《每周新闻》杂志, 26人阅读《时代》杂志, 26人阅读《财富》杂志, 9人阅读《每周新闻》和《财富》杂志, 11人阅读《每周新闻》和《时代》杂志, 8人阅读《时代》和《财富》杂志, 还有8人什么杂志也不读. (1) 求阅读全部3种杂志的人数; (2) 分别求只阅读《每周新闻》、《时代》和《财富》杂志的人数. 解 定义集合: 设E={x|x是调查对象},
A={x|x阅读《每周新闻》}, B={x|x阅读《时代》}, C={x|x阅读《财富》}
由条件得 |E|=60, |A|=25, |B|=26, |C|=26, |A∩C|=9, |A∩B|=11, |B∩C|=8, |E-A∪B∪C|=8 (1) 阅读全部3种杂志的人数=|A∩B∩C|
=|A∪B∪C|-(|A|+|B|+|C|)+(|A∩B|+|A∩C|
离散数学课后习题答案 - (左孝凌版)
1-1,1-2 (1) 解:
a) 是命题,真值为T。 b) 不是命题。
c) 是命题,真值要根据具体情况确定。 d) 不是命题。
e) 是命题,真值为T。 f) 是命题,真值为T。 g) 是命题,真值为F。 h) 不是命题。 i) 不是命题。 (2) 解:
原子命题:我爱北京天安门。
复合命题:如果不是练健美操,我就出外旅游拉。 (3) 解:
a) (┓P ∧R)→Q b) Q→R c) ┓P d) P→┓Q (4) 解:
a)设Q:我将去参加舞会。R:我有时间。P:天下雨。
Q? (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。 b)设R:我在看电视。Q:我在吃苹果。 R∧Q:我在看电视边吃苹果。
c) 设Q:一个数是奇数。R:一个数不能被2除。
(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。 (5) 解:
a) 设P:王强身体很好。Q:王强成绩很好。P∧Q b) 设P:小李看书。Q:小李听音乐。P∧Q c) 设P:气候很好。Q:气候很热。P∨Q
d) 设P: a和b是偶数。Q:a+b是偶数。P→Q
e) 设P:四边形ABCD是平行四边形。Q :四边形ABCD的对边平行。P?Q f
离散数学课后习题答案_(左孝凌版)
离散数学课后习题答案_(左孝凌版)
1-1,1-2 (1) 解:
a) b) c) d) e) f) g) h) i)
是命题,真值为T。 不是命题。
是命题,真值要根据具体情况确定。 不是命题。 是命题,真值为T。 是命题,真值为T。 是命题,真值为F。 不是命题。 不是命题。
(2) 解:
原子命题:我爱北京天安门。
复合命题:如果不是练健美操,我就出外旅游拉。 (3) 解:
a) b) c) d)
(┓P ∧R)→Q Q→R ┓P P→┓Q
(4) 解:
a)设Q:我将去参加舞会。R:我有时间。P:天下雨。
Q (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。 b)设R:我在看电视。Q:我在吃苹果。 R∧Q:我在看电视边吃苹果。
c) 设Q:一个数是奇数。R:一个数不能被2除。
(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。 (5) 解:
a) b) c) d) 设P:王强身体很好。Q:王强成绩很好。P∧Q 设P:小李看书。Q:小李听音乐。P∧Q 设P:气候很好。Q:气候很热。P∨Q 设P: a和b是偶数。Q:a+b是偶数。P→Q
离散数学课后习题答案_(左孝凌版)
e) f) (6) 解:
a) b) c) d
离散数学课后习题答案(左孝凌版)
离散数学课后习题答案 (左孝凌版)
1-1,1-2 (1) 解:
a) b) c) d) e) f) g) h) i)
是命题,真值为T。 不是命题。
是命题,真值要根据具体情况确定。 不是命题。 是命题,真值为T。 是命题,真值为T。 是命题,真值为F。 不是命题。 不是命题。
(2) 解:
原子命题:我爱北京天安门。
复合命题:如果不是练健美操,我就出外旅游拉。 (3) 解:
a) b) c) d)
(┓P ∧R)→Q Q→R ┓P P→┓Q
(4) 解:
a)设Q:我将去参加舞会。R:我有时间。P:天下雨。
Q? (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。 b)设R:我在看电视。Q:我在吃苹果。 R∧Q:我在看电视边吃苹果。
c) 设Q:一个数是奇数。R:一个数不能被2除。
(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。 (5) 解:
a) b) c) d) e) f) (6) 解:
a) b) c) d) e) f) g)
P:天气炎热。Q:正在下雨。 P∧Q P:天气炎热。R:湿度较低。 P∧R R:天正在下雨。S:湿度很高。 R∨S A:刘英上山。B:李进上山。
离散数学-第六章集合代数课后练习习题及答案
第六章作业 评分要求:
1. 合计57分
2. 给出每小题得分(注意: 写出扣分理由). 3. 总得分在采分点1处正确设置.
一 有限集合计数问题
(合计20分: 每小题10分, 正确定义集合得4分, 方法与过程4分, 结果2分) 要求: 掌握集合的定义方法以及处理有限集合计数问题的基本方法
1 对60个人的调查表明, 有25人阅读《每周新闻》杂志, 26人阅读《时代》杂志, 26人阅读《财富》杂志, 9人阅读《每周新闻》和《财富》杂志, 11人阅读《每周新闻》和《时代》杂志, 8人阅读《时代》和《财富》杂志, 还有8人什么杂志也不读. (1) 求阅读全部3种杂志的人数; (2) 分别求只阅读《每周新闻》、《时代》和《财富》杂志的人数. 解 定义集合: 设E={x|x是调查对象},
A={x|x阅读《每周新闻》}, B={x|x阅读《时代》}, C={x|x阅读《财富》}
由条件得 |E|=60, |A|=25, |B|=26, |C|=26, |A∩C|=9, |A∩B|=11, |B∩C|=8, |E-A∪B∪C|=8 (1) 阅读全部3种杂志的人数=|A∩B∩C|
=|A∪B∪C|-(|A|+|B|+|C|)+(|A∩B|+|A∩C|
第六章 课后习题
第六章 课后习题
一、单项选择题:
( C )1、 既想逛街又怕耽误复习反映了___________冲突。
A.双避 B.双趋 C.趋避 D.多重趋避
( C )2、通常,心理学中指的四种基本情绪包括___________。
A.快乐、期待、恐惧、同情 B.厌恶、接受、愤怒、惊讶 C.愤怒、快乐、恐惧、悲哀 D.悲哀、自豪、惊讶、同情
( A )3、“鱼与熊掌不能兼得”,反映的是___________。
A、双趋冲突 B、双避冲突 C、趋避冲突 D、多重趋避冲突
( C )4、“感时花溅泪,恨别鸟惊心”是一种__________。
A.情调 B. 激情 C. 心境 D.应激
( D )5、下列不属于人的基本情绪的是___________。
A.悲哀 B.恐惧 C.愤怒 D.自豪
( B )6、“人逢喜事精神爽”是一种___________。
A.紧张 B.