九年级点与圆的位置关系知识点

“九年级点与圆的位置关系知识点”相关的资料有哪些?“九年级点与圆的位置关系知识点”相关的范文有哪些?怎么写?下面是小编为您精心整理的“九年级点与圆的位置关系知识点”相关范文大全或资料大全,欢迎大家分享。

点与圆 圆与圆 直线与圆的位置关系 -

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

点与圆、圆与圆、直线与圆的位置关系

姓名: 日期: 指导老师:

知识点一:点与圆的位置关系

平面内,设⊙O的半径为r,点P到圆心的距离为d,则有d>r?点P在⊙O______;

d=r?点P在⊙O______;d

1、 ⊙O的半径为5,O点到P点的距离为6,则点P( ) A. 在⊙O内 B. 在⊙O外 C. 在⊙O上 D. 不能确定 2、 若△ABC的外接圆的圆心在△ABC的内部,则△ABC是( )

A. 锐角三角形

B. 直角三角形

C. 钝角三角形

D. 无法确定

3、直角三角形的两条直角边分别是12cm、5cm,这个三角形的外接圆的半径是( ).

A.5cm B.12cm C.13cm D.6.5cm

4、若⊙A的半径为5,圆心A的坐标是(3,4),点P的坐标是(5,8),你认为点P的位置为( )

A.在⊙A内 B.在⊙A上 C.在⊙A外 D.不能确定

5、Rt△ABC中,∠C=90°,AC=2,BC=4,如果以点A为圆心,AC为半径作⊙A,?那么斜边中点D与⊙O的位置关

系是( )

A.点D在⊙A外

点与圆、直线与圆、圆与圆的位置关系

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

点与圆、直线与圆、圆与圆的位置关系整合

教学目标 (一)教学知识点

1.进一步理解和掌握点与圆、直线与圆、圆与圆的位置关系.

2.不同位置关系所体现的数量关系,为以后与圆有关的计算、证明做铺垫. (二)能力训练要求

1.经历探索点与圆、直线与圆、圆与圆位置关系的过程,培养学生的探索能力. 2.通过观察得出“圆心到直线的距离d和半径r的数量关系”的对应与等价,从而实现位置关系与数量关系的相互转化.

(三)情感与价值观要求

通过探索点与圆、直线与圆、圆与圆位置关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心.

教学重点

经历探索点与圆、直线与圆、圆与圆位置关系的过程.理解点与圆、直线与圆、圆与圆的位置关系.掌握其对应与等价。

教学难点:经历探索点与圆、直线与圆、圆与圆位置关系的过程,归纳总结出三种位置关系下的对应与等价.

教学过程

Ⅰ.创设问题情境,引入新课

[师]我们在前面学过点和圆的位置关系,请大家回忆它们的位置关系有哪些?通过观看ppt课件,谈谈射击是如何计算成绩的?

[生]圆是平面上到定点的距离等于定长的所有点组成的图形.即圆上的点到圆心的距离等

点与圆的位置关系讲学稿

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

六里坪镇中学师生共用讲学稿

年级 : 九年级 学科:数学 执笔:张文英 审核:朱家政 内容:点和圆的位置关系 课型 新课 时间:2013年11月

学习目标:1.理解并掌握设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外?d>r;点P在圆上?d=r;点P在圆内?d

一 学前准备

1、圆的两种定义是什么?

2爱好运动的小华、小强、小兵三人相邀搞一次掷飞镖比赛。他们把靶子钉在一面土墙上,规则是谁掷出落点离红心越近,谁就胜。如下图中A、B、C三点分别是他们三人

某一轮掷镖的落点,你认为这一轮中谁的成绩好? 二:师生探究 合作交流 自学提示:自学教材第90页———第92页推论前内容,尝试自主解决以下问题:

1、 思考:平面上的一个圆把平面上的点分成哪几部分? 各部分的点与圆有

什么共同特征?

归纳小结:设⊙O的半径为r,点P到圆的距离为d,

则有:点P在圆外? 圆的外部可以看成是 的点的集合。

点P在圆上? 圆是 的点的集合。

点P在圆内? 。圆的内部可以看成是

九年级数学圆的知识点总结大全

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

第四章:《圆》

一、知识回顾

圆的周长: C=2πr或C=πd、圆的面积:S=πr2

圆环面积计算方法:S=πR2-πr2或S=π(R2-r2)(R是大圆半径,r是小圆半径)

二、知识要点 一、圆的概念

集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:

1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;

固定的端点O为圆心。连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点之间的部分叫做圆弧,简称弧。

2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线; 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;

4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系

1、点在圆内 ? d?r ? 点C在圆内; 2、点在圆上

位置与坐标知识点

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

页眉内容

《位置与坐标》知识点

一、确定位置

1、平面内确定一个物体的位置需要2个数据。

2、(1)行列定位法:在这种方法中常把平面分成若干行、列,然后利用行号和列号表示平面上点的位置,在此方法中,要牢记某点的位置需要两个互相独立的数据,两者缺一不可。(2)方位角距离定位法:方位角和距离。

(3)经纬定位法:它也需要两个数据:经度和纬度。

(4)区域定位法:只描述某点所在的大致位置。如“解放路22号”

3、弄清(a,b)中a与b各代表什么含义,顺序不能写错;图形与语言的相互转换。

二、平面直角坐标系相关概念

1、定义:在平面内,两条相互垂直且有公共原点的数轴组成平面直角坐标系。水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标系的原点。

2、象限:为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。

3、点的坐标

对于平面内任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐

位置与坐标知识点

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

页眉内容

《位置与坐标》知识点

一、确定位置

1、平面内确定一个物体的位置需要2个数据。

2、(1)行列定位法:在这种方法中常把平面分成若干行、列,然后利用行号和列号表示平面上点的位置,在此方法中,要牢记某点的位置需要两个互相独立的数据,两者缺一不可。(2)方位角距离定位法:方位角和距离。

(3)经纬定位法:它也需要两个数据:经度和纬度。

(4)区域定位法:只描述某点所在的大致位置。如“解放路22号”

3、弄清(a,b)中a与b各代表什么含义,顺序不能写错;图形与语言的相互转换。

二、平面直角坐标系相关概念

1、定义:在平面内,两条相互垂直且有公共原点的数轴组成平面直角坐标系。水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标系的原点。

2、象限:为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。

3、点的坐标

对于平面内任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐

九年级圆和圆的位置关系经典习题

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

圆和圆的位置关系 圆和圆的位置关系

如下图,是几种圆和圆的位置关系,设两圆圆心距为d、两圆半径分别为R和r,则由图可得:

外离 外切 相交 内切 内含 两圆相外离时,d R+r;两圆没有交点 两圆相外切时,d R+r;两圆只有一个交点 两圆相内切时,d R- r;两圆只有一个交点 两圆相交时, R-r d R+r;两圆有两个交点 两圆相内含时, 0 d R-r;两圆没有交点 精选习 一、填空题:

1.已知两圆半径分别为8、6,若两圆内切,则圆心距为______;若两圆外切,则圆心距为___. 2.已知两圆的圆心距d=8,两圆的半径长是方程x-8x+1=0的两根,则这两圆的位置关系是______.

3.圆心都在y轴上的两圆⊙O1、⊙O2,⊙O1的半径为5,⊙O2的半径为1,O1 的坐标为(0,-1),O2的坐标为(0,3),则两圆⊙O1

与⊙O2的位置关系是________.

4.⊙O1和⊙O2交于A、B两点,且⊙O1经过点O,若∠AO1B=90°,那么∠AO2B 的度数是__.

九年级知识点归纳

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

九年级上英语知识点归纳

Unit 1

一、知识点

1.Check in : 在旅馆的登记入住。 Check out: 在旅馆结账离开。 2.By: ①通过?..方式(途径)。例:I learn English by listening to tapes.

②在?..旁边。例:by the window/the door ③乘坐交通工具 例:by bus/car

④在??之前,到??为止。例:by October在10月前 ⑤被 例:English is spoken by many people. 3.how与what的区别:

how通常对方式或程度提问,意思有:怎么样 如何,通常用来做状语、表语。 what通常对动作的发出者或接受者提问,意思为 什么,通常做宾语,主语。 ①How is your summer holiday? It’s OK.(how表示程度 做表语) ②How did you travel around the world? I travel by air.

③What do you learn at school? I learn English, math and many ot

点和圆的位置关系教学设计 - 图文

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

点和圆的位置关系教学设计

【教材分析】

本节课选自于北师大版九年级数学下册第三章第二节。在学生了解了平面内有无数个点和圆的概念的基础上学习点和圆的三种位置关系,同时从点到圆心的距离与半径之间的数量关系来认识点和圆的位置关系。在线段垂直平分线相关内容的基础上了解在平面内经过已知一点、两点如何确定一个圆,掌握“不在同一直线上的三个点确定一个圆”,通过对“不在同一直线上的三个点确定一个圆”的证明认识反证法,并了解反证法的基本思路和一般步骤。

【教学目标】

根据新课程标准的要求,课改应体现学生身心发展特点;应有利于引导学生主动探索和发现;有利于进行创造性的教学。因此,我把本节课的教学目标确定为以下三个方面: 知识目标:

1.理解并掌握设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外:d>r;点P在圆上:d=r;点P在圆内:d

2.理解不在同一直线上的三个点确定一个圆并掌握它的运用.了解三角形的外接圆和三角形外心的概念.了解反证法的证明思想. 方法与过程目标:

在探索点与圆的三种位置关系时体会数学分类讨论思考问题的方法 情感态度与价值观目标:

1.培养学生数形转化的能力。

2.树立学生学数学、用数学的思想意识。

3.培养学生善于观

圆的知识点归纳

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

1 圆知识点归纳

1、垂径定理及推论。

(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

(2)推论:(知二推三)

平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。

平分弧的直径,垂直平分弧所对的弦。

2、圆周角与圆心角有关定理:

(1)圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。

(1)同弧所对的圆周角相等。

(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。

(3)如果三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形。

(4)四量关系:在同圆或等圆中,两条弦、两条弧、两个圆心角、两条弦心距

四对量中只要有一对量相等,其余四对量也分别相等。

3、点与圆的位置关系:设⊙O 的半径为r ,点P 与圆心的距离:OP=d 。

4、圆内接四边形对角相等,圆内接四边形的外角等于它的内对角。

5、直线与圆的位置关系。d 表示圆心到直线的距离,r 表示圆的半径。

6、圆的切线判定。

(1)d=r 时,直线是圆的切线。

切点不明确:画垂直,证半径。

(2)经过半径的外端且与半径垂直的直线是圆的切线。(r=d )

切点明确:连半径,证垂直。

7、圆的切线的性质:(1)经过切点的半径一定垂直于切线。

(2)经过切点并且垂直于这条切线的直线一