逻辑推导法
“逻辑推导法”相关的资料有哪些?“逻辑推导法”相关的范文有哪些?怎么写?下面是小编为您精心整理的“逻辑推导法”相关范文大全或资料大全,欢迎大家分享。
逻辑推导
【1】假设有一个池塘,里面有无穷多的水。现有2个空水壶,容积分别为5升和6升。问题是如何只用这2个水壶从池塘里取得3升的水。
由满6向空5倒,剩1升,把这1升倒5里,然后6剩满,倒5里面,由于5里面有1升水,因此6只能向5倒4升水,然后将6剩余的2升,倒入空的5里面,再灌满6向5里倒3升,剩余3升。
【2】周雯的妈妈是豫林水泥厂的化验员。一天,周雯来到化验室做作业。做完后想出去玩。\等等,妈妈还要考你一个题目,\她接着说,\你看这6只做化验用的玻璃杯,前面3只盛满了水,后面3只是空的。你能只移动1只玻璃杯,就便盛满水的杯子和空杯子间隔起来吗?\爱动脑筋的周雯,是学校里有名的\小机灵\,她只想了一会儿就做到了。请你想想看,\小机灵\是怎样做的? 设杯子编号为ABCDEF,ABC为满,DEF为空,把B中的水倒进E中即可。
【3】三个小伙子同时爱上了一个姑娘,为了决定他们谁能娶这个姑娘,他们决定用手枪进行一次决斗。小李的命中率是30%,小黄比他好些,命中率是50%,最出色的枪手是小林,他从不失误,命中率是100%。由于这个显而易见的事实,为公平起见,他们决定按这样的顺序:小李先开枪,小黄第二,小林最后。然后这样循环,直到他们只剩下一个人。那么这三个
坐标旋转推导
旋转坐标公式推导
x' cos y' sin
其中 sin x cos y x,y表示物体相对于旋转点旋转 的角度之前的坐标,x',y'表示物体逆时针旋转 后相对于旋转点的坐标
从数学上来说,此公式可以用来计算某个点绕着另外一点旋转一定角度后的坐
,,,,,cd, 标,例如:A(x,y)绕B(a,b)旋转 角度后的位置为C(c,d),则xyab
有如下关系式:
1.设A点旋转前的角度为 ,则旋转(逆时针)到C点之后角度为
2.求A,B两点的距离:dist1=|AB|=y/Sin( ) x/Cos( )
3.求C,B两点的距离:dist2=|CB|=d/Sin( ) c/Cos( )
4.显然dist1=dist2,设dist1=R所以:
R=y/Sin( ) x/Cos( ) d/Sin( ) c/Cos( )
5.由三角函数两角和差公式知:
旋转坐标公式推导
n ) Si(
s ) Co(
所以得出:
S(i n)C(o s)C ( o)sC ( o)s C(o )s (S i)n SinSin
c=RCos( ) RCos( )Cos( ) RSin( )Sin( ) xCos( ) ySin(
公式推导:马歇尔-勒纳条件:假定、推导和说明
马歇尔-勒纳条件:假定、推导和说明1
马歇尔-勒纳条件研究一定前提条件下
本币对外贬值改善贸易收支的必要条件
1)假定:
局部均衡:进出口值由进出口商品的相对价格和进出口量决定,其他影响进
出口的因素,如消费者的收入、其他商品的价格、消费者的偏好等都不变; 贸易商品的供给弹性无穷大,进出口的价格不因需求的增加而上涨,也不因
需求的减少而下降(贬值国是小国);
不考虑资本流动,即国际收支等于贸易收支;
初始条件假定:假定贬值前贸易差额不大,进出口在贬值前基本平衡;
设出口商品的汇率弹性为 X,进口商品的汇率弹性为 M,即:
(1)
其中:
Δ:变化量,
X和M:分别表示出口数量和进口数量,
r:直接标价的汇率(一单位外币可兑换的本币数量)。本币对外贬值时,
r增加。
2)推导过程:
由于一国通常采用本币来记录国际收支,因此,我们讨论用本币表示国际收支的情况。
在没有国际资本流动的假定下,国际收支B等于贸易收支:
B PX rPM (2)
其中Px为出口商品以本币表示的价格,PM为进口商品以外币表示的价格,并假定这些价格不变。
如果本币贬值,即r增加时,dB>0,则本币贬值能起到改善贸易收支的作用。 对(2)式求导,得: 1本推导过程和说明的主要来源
公式推导:马歇尔-勒纳条件:假定、推导和说明
马歇尔-勒纳条件:假定、推导和说明1
马歇尔-勒纳条件研究一定前提条件下
本币对外贬值改善贸易收支的必要条件
1)假定:
局部均衡:进出口值由进出口商品的相对价格和进出口量决定,其他影响进
出口的因素,如消费者的收入、其他商品的价格、消费者的偏好等都不变; 贸易商品的供给弹性无穷大,进出口的价格不因需求的增加而上涨,也不因
需求的减少而下降(贬值国是小国);
不考虑资本流动,即国际收支等于贸易收支;
初始条件假定:假定贬值前贸易差额不大,进出口在贬值前基本平衡;
设出口商品的汇率弹性为 X,进口商品的汇率弹性为 M,即:
(1)
其中:
Δ:变化量,
X和M:分别表示出口数量和进口数量,
r:直接标价的汇率(一单位外币可兑换的本币数量)。本币对外贬值时,
r增加。
2)推导过程:
由于一国通常采用本币来记录国际收支,因此,我们讨论用本币表示国际收支的情况。
在没有国际资本流动的假定下,国际收支B等于贸易收支:
B PX rPM (2)
其中Px为出口商品以本币表示的价格,PM为进口商品以外币表示的价格,并假定这些价格不变。
如果本币贬值,即r增加时,dB>0,则本币贬值能起到改善贸易收支的作用。 对(2)式求导,得: 1本推导过程和说明的主要来源
逻辑函数的公式化简法
王文敬
逻辑代数的八个基本定律01律 01律 交换律 结合律 分配律(1)A·1= A (2)A·0= 0 (5)A·B= B·A (7)A·(B·C)= (A·B) ·C (3)A+0= A (4)A+1= 1 (6)A+B= B+A (8)A+(B+C)= (A+B)+C
(9)A·(B+C)= A·B+A·C (10)A+(B·C)= (A+B)(A+C) 0
互补律 (11) A A = 重叠律 (13)A·A= A 反演律 否定律 (17 )Α =
(12) A + A =(14)A+A= A
1
(15) AB = A + BA
(16) A + B = A B
逻辑代数的常用公式
逻辑函数的公式化简法(1)并项法运用公式 A + A = 1 ,将两项合并为一项,消去 一个变量,如
例. Y1 = AB + ACD + A B + A CD
= ( A + A ) B + ( A + A )CD = B + CD
练习1. 练习1. Y2
= BC D + BCD + BC D + BCD= BC ( D + D ) +
欧拉稳定推导
第三章 压弯构件的失稳
轴力偏心作用的构件或同时受轴力和横向荷载作用的构件称为压弯构件。由于压弯构件兼有受压和受弯的功能,又普遍出现在框架结构中,因此又称为梁柱。
钢结构中的压弯构件多数是截面至少有一个对称轴,且偏心弯矩作用在对称平面的单向偏心情况。对单向偏心的压弯构件,有可能在弯矩平面内失稳,即发生弯曲失稳;也有可能在弯矩作用平面外失稳,即弯扭失稳。其弯曲失稳为第二类稳定问题,即极值点失稳;其弯扭失稳对理想的无缺陷的压弯构件属于第一类稳定问题,即分支点失稳,但对实际构件则是极值点失稳。
对理想的两端简支的双轴对称工形截面压弯构件,在两端作用有轴线压力P和使构件产生同向曲率变形的弯矩M,如果在其侧向有足够的支撑 (如图3.1(b)),构件将发生平面内的弯曲失稳,其荷载―挠度曲线如图3.2(a)中曲线a,失稳的极限荷载为Pu,属于极值点失稳。
图3.1 两端简支理想压弯构件 图3.2 压弯构件荷载变形曲线
如果在侧向没有设置支撑(如图3.1(c)),则构件在荷载P未达到平面内极限荷载Pu时,可能发生弯扭失稳,即在弯矩作用平面内产生挠度v,在平面外剪心产生位移u,并绕纵
数字逻辑毛法尧课后题答案
《数字逻辑》习题解答
习题一
1.1 把下列不同进制数写成按权展开式:
⑴ (4517.239)10= 4×103+5×102+1×101+7×100+2×10-1+3×10-2+9×10-3
⑵ (10110.0101)2=1×24+0×23+1×22+1×21+0×20+0×2-1+1×2-2+0×2-3+1×2-4 ⑶ (325.744)8=3×82+2×81+5×80+7×8-1+4×8-2+4×8-3
⑷ (785.4AF)16=7×162+8×161+5×160+4×16-1+A×16-2+F×16-3 1.2 完成下列二进制表达式的运算:
1.3 将下列二进制数转换成十进制数、八进制数和十六进制数: ⑴ (1110101)2=(165)8=(75)16=7×16+5=(117)10
⑵ (0.110101)2=(0.65)8=(0.D4)16=13×16-1+4×16-2=(0.828125)10 ⑶ (10111.01)2=(27.2)8=(17.4)16=1×16+7+4×16-1=(23.25)10
1.4 将下列十进制数转换成二进制数、八进制数和十六进制数,精确到小数点后5位: ⑴ (29)10=(1D)16=
7037-各种湍流模型详细推导
第三章 Fluent湍流模型介绍
3.1 Fluent中湍流模型概述 3.1.1 湍流模型框架结构
Fluent中湍流的数值模拟方法可以分为直接数值模拟方法和非直接数值模拟方法。所谓直接数值模拟方法是指直接求解瞬时湍流控制方程(3.1)和(3.2)。而非直接数值模拟方法就是不直接计算湍流的脉动特性,而是设法对湍流作某种程度的近似和简化处理。依赖所采用的近似和简化方法不同,非直接数值模拟方法分为大涡模拟、统计平均法和Reynolds平均法。
下图简要概括了湍流模型的分类:
1
图3.1三维湍流数值模拟方法及相应的湍流模型
3.1.2湍流模型概述
3.1.2a直接数值模拟(DNS)
直接数值模拟(Direct Numerical Simulation,简称DNS)方法就是直接用瞬时的N-S方程对湍流进行计算。DNS的最大好处是无需对湍流流动作任何简化或近似,理论上可以得到相对准确的计算结果。虽然这样计算的误差很小,最能贴近实际工况,但是计算量巨大,网格必须 小于或等于流场中最小的涡结构尺寸。在现有的计算机水平下,该方法只能求解低雷诺数,理想边界条件下简单的流动,很难应用于工程计算。 3.1.2b大涡模拟(LES)
在模拟湍流运动的过程中,一
圆锥体积公式的推导
推导
第十课时
教学目标:
知识与能力:使学生理解求圆锥体积的计算公式.
过程与方法:会运用公式计算圆锥的体积.
情感态度和价值观::培养学生初步的空间观念和思维能力;让学生认识“转化”的思考方法。
教学重点
圆锥体体积计算公式的推导过程.
教学难点
正确理解圆锥体积计算公式.
教学过程:
一、铺垫孕伏
1、提问:
(1)圆柱的体积公式是什么?
(2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高.
2、导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题.(板书:圆锥的体积)
二、探究新知
(一)指导探究圆锥体积的计算公式.
1、教师谈话:
下面我们利用实验的方法来探究圆锥体积的计算方法.老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土.实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里.倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?
2、学生分组实验
学生汇报实验结果
①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满.
推导
②圆柱和圆锥的底面积不相等,高相等,
MM定理的严格推导
MM定理的严格推导
一基本模型
1. 未确定现金流的资本化率
假设公司只进行股权融资。
假设1:公司拥有的实物资产会带来一系列现金流(即收益),现金流是随机变量,不同个体对各现金流的预期期望值相同。
假设21:某一公司的股票收益与同一类别(这应该就是类别的定义吧)的另一公司的股票收益的比值为常数。也就是说,对同一类别的公司,
股票收益有完全相同的分布(不是独
股价立同分布,而是同一个分布)。
在上述假设下,每一类别的公司股票收益与其股价的比值的期望为常数。即,
Pj?Xj?k(1)
或
Xj??kPj(2)
是其股票收益的期望,?k为常数。
其中,Pj是第k类公司中、公司j的股价,
Xj?k具有三个含义:
a) 式(2)表示?k是1单位股份的期望收益。 b) 式(1)中,令Xj?1,则Pj?1?k,表示
1?k是为获得1单位收益所支付的成本。
c) 从终身年金的角度考虑,式(1)表示?k是未确定现金流的贴现率,即未确定现金流
的资本化率。
1
该假设过于严格,它保证了任何情况下MM定理的成立。该假设可放宽,比如,如果人们的投资决策只与