大一高数笔记

“大一高数笔记”相关的资料有哪些?“大一高数笔记”相关的范文有哪些?怎么写?下面是小编为您精心整理的“大一高数笔记”相关范文大全或资料大全,欢迎大家分享。

大一高数(上)

标签:文库时间:2024-11-17
【bwwdw.com - 博文网】

姓名:班级:学号:

第一章 函数、极限、连续(小结)

一、函数

1. 邻域:U(a),U(a) 以a为中心的任何开区间; 2. 定义域:y?tanx{x?k??};y?cotx{x?k?};

??2y?arctanx{x?R,y?(?,)};y?arcsinx{x?[?1,1],y?[?,]}

2222 y?arccosx{x?[?1,1],y?[0,?]}.

二、极限

1. 极限定义:(了解)

????limxn?a? 若对于???0,?N?Z?,st. 当n?N时,有|xn?a|??;

n??Note:|xn?a|???n??

x?x0limf(x)?A????0,???0,st. 当0?x?x0??时,有f(x)?A??;

Note:f(x)?A???x?x0??

limf(x)?A????0,?X?0,st. 当x?X时,有f(x)?A??;

x??Note:f(x)?A???x?? 2.函数极限的计算(掌握)

??f(x)?A?f(x0f(x)?A;(1) 定理: lim(分段函数) )?f(x0)?lim??x?x0x?x0x2?13?x?1?x0(2)型:①约公因子,有理化; 比如:lim3,lim;

x?1x?1x

高数笔记大全

标签:文库时间:2024-11-17
【bwwdw.com - 博文网】

第一章 函数、极限和连续 §1.1 函数 一、

主要内容

㈠ 函数的概念

1. 函数的定义: y=f(x), x∈D

定义域: D(f), 值域: Z(f).

y??f(x)x?D?12.分段函数:

?g(x)x?D2

3.隐函数: F(x,y)= 0

4.反函数: y=f(x) → x=φ(y)=f-1

(y) y=f-1

(x)

定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数:

y=f-1

(x), D(f-1

)=Y, Z(f-1

)=X

且也是严格单调增加(或减少)的。

㈡ 函数的几何特性

1.函数的单调性: y=f(x),x∈D,x1、x2∈D 当x1<x2时,若f(x1)≤f(x2),

则称f(x)在D内单调增加( );

若f(x1)≥f(x2),

则称f(x)在D内单调减少( );

若f(x1)<f(x2),

则称f(x)在D内严格单调增加( );

若f(x1)>f(x2),

则称f(x)在D内严格单调减少( )。

2.函数的奇偶性:D(f)关于原点对称 偶函数:f

大一高数习题和答案

标签:文库时间:2024-11-17
【bwwdw.com - 博文网】

一、选择题

1、某质点作直线运动的运动学方程为x?3t?2t2(SI), 则该

质点作 ( ) (A) 匀加速直线运动,加速度沿x正方向. (B) 匀加速直线运动,加速度沿x负方向. (C) 匀减速直线运动,加速度沿x正方向. (D) 匀减速直线运动,加速度沿x负方向.

2、物体在恒力F作用下作直线运动,在时间?t1内速率由v增加到2v,在时间?t2内速率由2v增加到3v,设F在?t1内的冲量是I1,在?t2内的冲量是I2,那么 ( ) (A)I1?I2 (B) I1?I2

(C) I1?I2 (D) 不能确定

3、物体在恒力F作用下作直线运动,在时间?t1内速度由v增

3v,设F在?t1内加到2v,在时间?t2内速度由2v增加到作的功是W1,在?t2内作的功是W2,那么 ( ) (A) W1?W2 (B) W1?W2

(C) W1?W2 (D) 不能确定

??F4、关于电场强度定义式E?q0,下列说法中哪个是正确

的?

大一高数复习资料

标签:文库时间:2024-11-17
【bwwdw.com - 博文网】

高等数学(本科少学时类型)

第一章 函数与极限

第一节 函数

○函数基础(高中函数部分相关知识)(★★★) ○邻域(去心邻域)(★) EMBED Equation.3 ??

EMBED Equation.3 ??

第二节 数列的极限

○数列极限的证明(★)

【题型示例】已知数列 EMBED Equation.3 ??,证明?? EMBED Equation.3 ????

??

【证明示例】?? EMBED Equation.3 ??????语言

1.由?? EMBED Equation.3 ????化简得?? EMBED Equation.3 ??????,

??

∴?? EMBED Equation.3 ????

??

2.即对?? EMBED Equation.3 ??????,?? EMBED Equation.3 ????,当?? EMBED Equation.3

??

??????时,始终有不等式?? EMBED Equation.3 ????成立,

??

∴?? EMBED Equation.3 ????

??

第三节 函数的极限

○ EMBED Equation.3 时函数极限的证明(★)

【题型示例】已

大一高数微积分下册答案

标签:文库时间:2024-11-17
【bwwdw.com - 博文网】

第六章 定积分

§6.1~6.2 定积分的概念、性质

一、填空题

1、设f(x)在[a,b]上连续,n等分[a,b]:a?x0?x1??xn?1?xn?b,并取小区

nb?ab?a)??间左端点xi?1,作乘积f(xi?1)?,则lim?f(xi?1n??nni?1??2baf(x)dx.

2、根据定积分的几何意义,

??20xdx?2,

?1?11?x2dx?,

??sinxdx??0.

3、设f(x)在闭区间[a,b]上连续,则

?baf(x)dx??f(t)dt?ab0.

二、单项选择题

1、定积分

?baf(x)dx (C) .

(A) 与f(x)无关 (B) 与区间[a,b]无关 (C) 与变量x采用的符号无关 (D) 是变量x的函数 2、下列不等式成立的是 (C) . (A) (C)

?21x2dx??x3dx (B) ?lnxdx??(lnx)2dx

111222?10xdx??ln(1?x)dx (D) ?edx??(1?x)dx

00011x13、设f(x)在[a,b]上连续,且

?baf(x)dx?0,则 (C)

同济大一高数期中复习题

标签:文库时间:2024-11-17
【bwwdw.com - 博文网】

高数复习题高数复习高数考试高数题目同济高数

一、常数项无穷级数

1. lim un = 0 是级数 ∑ un 收敛的 .n →∞n =1

条件. 条件.

解:必要非充分. 必要非充分.

ln n 3 2. ∑ n = . n=0 2

.

解:公比 q =

ln 3 1 < 1 的等比级数收敛且和 s = . 2 1 ln 3 2∞

1 3.对于无穷级数 ∑ 2 p ,下面中正确的是 [ ]. . . n =1 n (A) 仅当 p > 1 时收敛; 时收敛; (B) 仅当 p < 1 时收敛; 时收敛;(C) 仅当 p = 1 时收敛; 时收敛; (D) 仅当 p > 1 2 时收敛. 时收敛. ∞ 1 时级数收敛. 解: p 级数 ∑ 2 p 仅在 2 p > 1 ,即 p > 1 2 时级数收敛. n =1 n

高数复习题高数复习高数考试高数题目同济高数

4.若 ∑ | un | 收敛,则下面命题中不正确的是 . 收敛,

[

]. .

(A) ∑ un 必收敛; 必收敛;n =1

∞ n =1

(B) | un | 必单调减少; 必单调减少;

(C) lim un = 0 ;n →∞

(D) ∑ ( 1) un 必收敛.

大一高数复习资料【全】(1)

标签:文库时间:2024-11-17
【bwwdw.com - 博文网】

高等数学(本科少学时类型) 第一章 函数与极限

第一节 函数

○函数基础(高中函数部分相关知识)

(★★★) ○邻域(去心邻域)(★) U a, x|x a

U a, x|0 x a

始终有不等式f x A 成立,

f x A ∴limx

第二节 数列的极限 ○数列极限的证明(★)

【题型示例】已知数列 xn ,证明lim xn a x

【证明示例】 N语言

1.由xn a 化简得n g ,

∴N g

2.即对 0, N g 。当n N时,

始终有不等式xn a 成立,

xn a ∴limx

第三节 函数的极限

○x x0时函数极限的证明(★) 【题型示例】已知函数f x ,证明

limf x A x x

第四节 无穷小与无穷大

○无穷小与无穷大的本质(★)

函数f x 无穷小 limf x 0 函数f x 无穷大 limf x ○无穷小与无穷大的相关定理与推论

(★★)

(定理三)假设f x 为有界函数,g x 为

无穷小,则lim f x g x 0 (定理四)在自变量的某个变化过程中,若f x 为无穷大,则f 1 x 为无穷小;反之,若f x 为无穷小,且

f x 0,

大一高数期末考试题(精)

标签:文库时间:2024-11-17
【bwwdw.com - 博文网】

二、填空题(本大题有4小题,每小题4分,共16分)

1. 2. 3.

lim(1?3x)x?02sinx? .

已知cosx是f(x)的一个原函数,x .

则?f(x)?cosxdx?x

n??12lim?n(cos2?n?cos22?n?1???cos2?)?nn . ?4.

-x2arcsinx?11?x2dx? . 三、解答题(本大题有5小题,每小题8分,共40分)

12x?yy?y(x)e?sin(xy)?1确定,求y?(x)以及y?(0). 5. 设函数由方程

1?x7求?dx.7x(1?x)6.

?x? 1?xe,  x?0设f(x)?? 求?f(x)dx.?32??2x?x,0?x?17.

18.

设函数

f(x)连续,

g(x)??f(xt)dt0,且

limx?0f(x)?Ax,A为常数. 求

g?(x)并讨论g?(x)在x?0处的连续性.

9.

求微分方程xy??2y?xlnx满足

大一高数期末考试题(精)

标签:文库时间:2024-11-17
【bwwdw.com - 博文网】

. 高等数学I 解答

一、单项选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中)

(本大题有4小题, 每小题4分, 共16分)

1. 当0x x →时,()(),x x αβ都是无穷小,则当0x x →时( D )不一定是无穷小.

(A) ()()x x βα+ (B) ()()x x 22βα+

(C) [])()(1ln x x βα?+ (D) )()

(2x x βα

2. 极限a

x a x a x -→??? ??1

sin sin lim 的值是( C ).

(A ) 1 (B ) e (C ) a

e cot (D ) a

e tan

3. ?????=≠-

+=00

1

sin )(2x a x x

e x x

f ax 在0x =处连续,则a =( D ).

(A ) 1 (B ) 0 (C ) e (D ) 1-

4. 设)(x f 在点x a =处可导,那么=

--+→h h a f h a f h )

2()(lim 0( A ).

(A ) )(3a f ' (B ) )(2a f '

(C) )(a f ' (D ) )

(3

大一高数期末考试题(精)

标签:文库时间:2024-11-17
【bwwdw.com - 博文网】

. 高等数学I 解答

一、单项选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中)

(本大题有4小题, 每小题4分, 共16分)

1. 当0x x →时,()(),x x αβ都是无穷小,则当0x x →时( D )不一定是无穷小.

(A) ()()x x βα+ (B) ()()x x 22βα+

(C) [])()(1ln x x βα?+ (D) )()

(2x x βα

2. 极限a

x a x a x -→??? ??1

sin sin lim 的值是( C ).

(A ) 1 (B ) e (C ) a

e cot (D ) a

e tan

3. ?????=≠-

+=00

1

sin )(2x a x x

e x x

f ax 在0x =处连续,则a =( D ).

(A ) 1 (B ) 0 (C ) e (D ) 1-

4. 设)(x f 在点x a =处可导,那么=

--+→h h a f h a f h )

2()(lim 0( A ).

(A ) )(3a f ' (B ) )(2a f '

(C) )(a f ' (D ) )

(3