测量频率比时
“测量频率比时”相关的资料有哪些?“测量频率比时”相关的范文有哪些?怎么写?下面是小编为您精心整理的“测量频率比时”相关范文大全或资料大全,欢迎大家分享。
实验二 频率测量
亚美微波YAMEI MICROWAVE
实验二 频率测量
一、实验的目的和要求
应用所学过的微波技术有关理论知识,理解和掌握微波频率的测量方法,了解晶体检波器的工作原理,掌握晶体检波器在微波测量中的应用。
二、实验内容
1.掌握微波频率计(PX16)和晶体检波器(BD20-4)的工作原理和使用方法。 2.了解定向耦合器(BD20-5)、H面弯波导(BD20-14)等微波元器件的结构、原理和使用方法。
三、实验原理
在微波测量中,测量频率的方法很多,本实验所采用的是利用圆柱形谐振腔通过耦合吸收传输波导中的能量而使传输波导能量减少的方法。
本实验的微波测量系统的组成如图一所示 下面叙述有关部分的功能和工作原理 1. 定向耦合器(BD20-5)
定向耦合器的外形成十字形,它的耦合元件是主副波导相对宽边之间的一对十字槽,能量通过这一对十字槽耦合到副波导中。当主波导的能量沿正方向传输时,副波导耦合所得能量在它的传输方向是迭加,而与此相反的方向则互相抵消。副波导中的这一端装有一匹配负载,以吸收未抵消尽的能量。
本实验是利用副线中传输的能量进行频率测量。
2. H面弯波导(BD20-14)
H面弯波导采用平缓弧形转弯,改变波导宽边的轴线。由
微波测量系统调试与频率测量
实验B1 微波测量系统调试与频率测量
【实验目的】
1.了解微波测量系统的基本组成,学会一般的调试方法。
2.了解反射速调管微波信号源原理及特性,掌握调整参数使微波源实现最佳工作状态的方法。 3.了解微波谐振腔的基本特性,掌握测量谐振腔的谐振频率和品质因数的基本方法。 4.学会用谐振腔波长表测量微波频率。
【实验原理】
一.微波测量系统
微波测量系统通常由等效电源、测量装置、指示仪器三部分组成。微波等效电源部分即微波发送器,包括微波信号源、工作状态(频率、功率等)监视单元、隔离器等。测量装置部分也称测量电路,包括测量线、调配元件、待测元件、辅助器件(如短路器、匹配负载等)以及电磁能量检测器(如晶体检波架、功率插头等)。测量指示仪器是显示测量信号特性的仪表,如直流电流表、测量放大器、选频放大器、功率计、示波器、数字频率计等。
二.反射速调管微波信号源
微波信号源有许多类型,本实验中使用的是反射式速调管信号源
1.反射速调管的工作原理
反射式速调管有阴极、阳极(谐振腔)、反射极三个电
极,结构原理如图2所示。阴极发射电子;阳极利用耦合环和同轴线输出微波功率;反射极用以反射电子。由阴极发出电子束,受直流电场加速后,进入谐振腔。电子以不同的速度从谐
微波测量系统调试与频率
中国石油大学 近代物理实验 实验报告 成 绩: 实验B1 微波测量系统调试与频率测量
【实验目的】
1.了解微波测量系统的基本组成,学会调试测量系统的基本方法。
2.了解反射式速调管微波信号源的工作原理及工作特性,掌握正确调整微波源实现最佳工作状态的基本方法。
3.了解微波谐振腔的基本特性,掌握测量谐振腔的谐振频率和品质因数的基本方法。 4.学会用谐振腔波长表测量微波频率。
【实验原理】
一、反射式速调管微波信号源
1.反射式速调管的工作原理
反射式速调管有阴极、阳极(谐振腔)、反射极三个电极,结构原理如图B1-2所示。阴极发射电子;阳极利用耦合环和同轴线输出微波功率;反射极用以反射电子。
由阴极发出的电子束,受直流电场加速后,以一定速度进入谐振腔,并在其中激起感应电流脉冲,从而在谐振腔内建立衰减振荡,这些振荡在谐振腔的两个栅网之间产生交变电场。由于受到谐振腔栅
图B1-2 反射式速调管的结构原理
极的高频电场调剂,电子以不同的速度从谐振腔飞出来而进入反射极空间。反射极的电压一般比谐振腔低很多;因此,在谐振腔和反射极之间,形成了一个很强的直流排斥电场,使电子未飞到反射极就被迫停下来,又反射回谐振腔
微波测量系统调试与频率
中国石油大学 近代物理实验 实验报告 成 绩: 实验B1 微波测量系统调试与频率测量
【实验目的】
1.了解微波测量系统的基本组成,学会调试测量系统的基本方法。
2.了解反射式速调管微波信号源的工作原理及工作特性,掌握正确调整微波源实现最佳工作状态的基本方法。
3.了解微波谐振腔的基本特性,掌握测量谐振腔的谐振频率和品质因数的基本方法。 4.学会用谐振腔波长表测量微波频率。
【实验原理】
一、反射式速调管微波信号源
1.反射式速调管的工作原理
反射式速调管有阴极、阳极(谐振腔)、反射极三个电极,结构原理如图B1-2所示。阴极发射电子;阳极利用耦合环和同轴线输出微波功率;反射极用以反射电子。
由阴极发出的电子束,受直流电场加速后,以一定速度进入谐振腔,并在其中激起感应电流脉冲,从而在谐振腔内建立衰减振荡,这些振荡在谐振腔的两个栅网之间产生交变电场。由于受到谐振腔栅
图B1-2 反射式速调管的结构原理
极的高频电场调剂,电子以不同的速度从谐振腔飞出来而进入反射极空间。反射极的电压一般比谐振腔低很多;因此,在谐振腔和反射极之间,形成了一个很强的直流排斥电场,使电子未飞到反射极就被迫停下来,又反射回谐振腔
电子荷质比测量
《大学物理实验II》实验指导
实验6. 电子荷质比测量
带电粒子的电量与质量的比值--荷质比(又称:比荷),是带电微观粒子的基本参量之一。荷质比的测定在近代物理学的发展中具有重大的意义,是研究物质结构的基础。1897年,J.J.汤姆逊正是在对“阴极射线”粒子荷质比的测定中,首先发现电子的。测定荷质比的方法很多,汤姆逊所用的是磁偏转法,而本实验采用磁聚焦法。
一.实验目的
1. 了解示波管的基本构造和工作原理。 2. 理解示波管中电子束电聚焦的基本原理。
3. 掌握利用作图法求电磁偏转灵敏度的数据处理方法。 二.实验原理
1. 示波管的基本结构
示波管又叫阴极射线管,以8SJ31J为例,它的构造如图6.1所示,主要包括三个部分:前端为荧光屏,中间为偏转系统,后端为电子枪。
图6.1 示波管结构示意图
(1)电子枪
电子枪的作用是发射电子,并把它们加速到一定速度聚成一细束。电子枪由灯丝、阴极K、控制栅极G、第一阳极Al、第二阳极A2等同轴金属圆筒和膜片组成。灯丝通电后加热阴极K,使阴极K发射电子。控制栅极G的电位比阴极低,对阴极发出的电子起排斥作用,只有初速度较大的电子才能穿过栅极的小孔并射向荧光屏,而初速度较小的电子则被电场排斥回阴极。通过调
几种提高微波频率测量精度的方法
几种提高微波频率测量精度的方法
许嘉晨 13208-2 2013201210
摘 要:本文概述了微波频率测量常见方法以及基本原理,介绍了多周期同步测频法、模拟内插法、游标内差法及平均法四种可以提高微波频率测量精度的手段。 关 键 词:微波频率测量、测量精度、模拟内插法、游标内差法。
引言
频率是微波设备的重要参数,微波仪器通过测量其工作频率来检测其是否正常运行。为了保证微波频率测量的有效性,必须提高微波频率测试仪器的测量精度。本文阐释了微波频率测量基本原理,例举了常用的几种微波频率测量方法,最后介绍了几种常用的提高微波频率测量精度的方法。
2频率测量方法
测量频率的方法无非是设法将被测频率直接或间接地与标准频率进行比较。按照具体进行比较的方式不同,频率测量可分为许多种不同方法。首先,按照测量装置中是否包含有作为标准频率的振荡源,可以分为有源法和无源法两大类。有源法便是将未知频率fx的信号与仪器内部产生的或外加的频率fs为已知的信号直接比较频率。比较的方法常用的有外差法和计数法两种。外差法多年来曾经是测量高频直至微波频率最主要的精密仪器,但近年来由于更加精确而易用的计数式频率计大量问世,外差式频率计已有逐渐被淘汰之势。
计数法是指以计数式频率
时间频率测量技术的发展与应用
21世纪中国电子仪器发展战略研讨会 2004年9月
时间频率测量技术的发展与应用
陈洪卿
(中国科学院国家授时中心)
1时间频率精密测量的目的和意义
信息化时代的到来,高精度时问频率已经成为一个国家科技、经济、政治、军事和社会生活中至关重要的一个参量。时间的应用范围已经渗透到从基础研究领域(天文学、地球动力学、物理学等)到工程技术领域(信息传递、电力输配、深空跟踪、空间旅行、导航定位、武器实验、地震监测、计量测试等),以及关系到国计民生的国家诸多重要部门和领域(交通运输、金融证券、邮电通信等)的各个方面,
几乎无所不及。
中国科协副主席、时间工作专家叶叔华院士认为“生活离不开时间频率,它是高新技术的基础”。
“863”高科技计划倡导者陈芳允院士认为“时间频率在工业、交通、电信等方面的应用十分广泛。计时、工业控制、定位导航、现代数字化技术和计算机都离不开时频技术和时频测量”。它“在科技发展和社会进步中占有特殊重要的地位。”[1]2003年全国时间频率学术会议上,王义道教授作特邀报告“建设我国独立自主时间频率系统的思考”[2]指出:时间频率系统是维护国家安全和独立自主的命脉;现代化战争中原子钟比原子弹更重要;精密时间频率广泛应用于现代通信、导航、制导
悬臂梁固有频率测量试验
机械工程测试与控制技术试验 试验七 悬臂梁固有频率测量试验
…………………… 08机电一班
实验数据: 通道11 2355 2301 1957 1472 882.9 84.84 -924 -1903 -2575 -2904 -3070 -3185 -3156 -2850 -2308 -1702 -1104
第 1 页 共 72 页
-395.8 516.3 1491 2257 2706 2958 3145 3214 3022 2565 1999 1432 786.9 -58.3 -1033 -1890 -2465 -2818 -3086 -3253 -3183 -2821 -2288 -1729 -1127 -359.3 575.6 1480 2149 2579 2900 3156 3228 3008 2554 2023 1460 763.7 -119.6 -1047 -1800 -2316 -2705 -3042
第 2 页 共 72 页
-3230 -3127 -2744 -2236 -1703 -1074 -257 669.2 1490 2082 2514 2886 3150 3160 2880 2437 1955 1399 662.
时间频率测量技术的发展与应用
21世纪中国电子仪器发展战略研讨会 2004年9月
时间频率测量技术的发展与应用
陈洪卿
(中国科学院国家授时中心)
1时间频率精密测量的目的和意义
信息化时代的到来,高精度时问频率已经成为一个国家科技、经济、政治、军事和社会生活中至关重要的一个参量。时间的应用范围已经渗透到从基础研究领域(天文学、地球动力学、物理学等)到工程技术领域(信息传递、电力输配、深空跟踪、空间旅行、导航定位、武器实验、地震监测、计量测试等),以及关系到国计民生的国家诸多重要部门和领域(交通运输、金融证券、邮电通信等)的各个方面,
几乎无所不及。
中国科协副主席、时间工作专家叶叔华院士认为“生活离不开时间频率,它是高新技术的基础”。
“863”高科技计划倡导者陈芳允院士认为“时间频率在工业、交通、电信等方面的应用十分广泛。计时、工业控制、定位导航、现代数字化技术和计算机都离不开时频技术和时频测量”。它“在科技发展和社会进步中占有特殊重要的地位。”[1]2003年全国时间频率学术会议上,王义道教授作特邀报告“建设我国独立自主时间频率系统的思考”[2]指出:时间频率系统是维护国家安全和独立自主的命脉;现代化战争中原子钟比原子弹更重要;精密时间频率广泛应用于现代通信、导航、制导
塞曼效应测量电子荷质比
2013/5/18南华大学核科学技术学院毕业设计(论文)
毕业设计(论文)
题 目 塞曼效应测量电子荷质比 学院名称 核科学技术学院 指导教师 谢安平 职 称 副教授 班 级 核技065 学 号 20064530511 学生姓名 韩楷
2010年5月29日
第1 页,共55 页
2013/5/18南华大学核科学技术学院毕业设计(论文)
南 华 大 学
毕业设计(论文)任务书
学 院:核科学技术学院
题 目:塞曼效应测量电子荷质比
起 止 时 间: 2009.12至 2010.5
学 生 姓 名: 韩楷
专 业 班 级: 核技065 指 导 教 师: 谢安平 教研室主任: 院 长: