一元一次不等式经典题型及解析

“一元一次不等式经典题型及解析”相关的资料有哪些?“一元一次不等式经典题型及解析”相关的范文有哪些?怎么写?下面是小编为您精心整理的“一元一次不等式经典题型及解析”相关范文大全或资料大全,欢迎大家分享。

一元一次不等式题型归纳总结(经典)

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

一元一次不等式和一元一次不等式组题型归纳

201509

: 授课时间:

一.对一元一次不等式定义的理解

1.下列各式中,是一元一次不等式的是( )

A、5+4>8 B、12-x C、x 2≤5 D、x x

31-≥0 2.下列式子①3x =5;②a >2;③3m -1≤4;④5x +6y ;⑤a +2≠a -2;⑥-1>2中,不等式有( )个

A 、2

B 、3

C 、4

D 、5

3.下列说法,错误的是( )

A、33- x 的解集是1- x B、-10是102- x 的解

C、2 x 的整数解有无数多个 D、2 x 的负整数解只有有限多个

4.下列不等关系中,正确的是( )

A 、 a 不是负数表示为a >0;

B 、x 不大于5可表示为x >5

C 、x 与1的和是非负数可表示为x +1>0;

D 、m 与4的差是负数可表示为m -4<0

二.已知围,求正确的结论

5.若a 为有理数,则下列结论正确的是( )

A. a >0

B. -a ≤0

C. a 2>0

D. a 2+1>0

6.若a >b ,且c 是有理数,则下列各式正确的是( )

①ac >bc ②ac <bc ③ac 2>bc

一元一次不等式及不等式组培优

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

一元一次不等式及不等式组培优 一、一元一次不等式和函数

1.一次函数y=kx+b(k,b是常数,k?0)的图象如图所示,则不等式kx+b>0的解集是 ;

不等式kx+b<2的解集是 ; 当x<0时,y的取值范围是 ;

当x>-2时,y的取值范围是 .

2.直线l1:y?k1x?b与直线l2:y?k2x在同一平面直角坐标系中的图象如图所示,则关

y 于x的不等式k2x?k1x?b的解集为 .

3.一次函数y=5x-2m与与y=3x-6m+1交于第四象限,m的范围___________.

3 -1.5 o x

4.已知2x+y=5,当x满足条件 时,﹣1≤y<3.

5.如图,直线y=kx+b过A(﹣1,2),B(﹣2,0)两点,则0≤kx+b<4的解集为 .

6.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+4n>0的整数解是 .

二、二元一次方程组和不等式 1.已知方程组

的解为负整数,求整数a的值.

2.已知方程组值.

3.已知方程组

(1)求m的取值范围; (2)化简:|

一元一次不等式与一元一次不等式组典型例题

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

一元一次不等式与一元一次不等式组的解法

知识点回顾

1.不等式用不等号连接起来的式子叫做不等式.常见的不等号有五种: “≠”、 “>” 、 “<” 、 “≥”、 “≤”. 2.不等式的解与解集

不等式的解:使不等式成立的未知数的值,叫做不等式的解.

不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.

不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。

说明:不等式的解与一元一次方程的解是有区别的,不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值. 3.不等式的基本性质(重点)

(1)不等式的两边都加上(或减去)同一个数或同一个整式.不等号的方向不变.如果a?b,那么

a?c__b?c

(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.如果a?b,c?0,那么ac__bc(或

ab___) cc (3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.如果a?b,c?0那么ac__bc(或

ab___) cc说明:常见不等式所表示的基本语言与含义还有:

①若a-b>0,则a大于b ;②若a-b<0,则a小于b ;③若a

一元一次不等式培优

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

一元一次不等式培优

例1、已知不等式3(1-x)<2(x+10) - 2 ① 与不等式

4x?a2(5x?12)< ② 36(1).如果不等式①的解集与不等式②的解集相同。求a的值。

(2)如果不等式①的解集都是不等式②的解,求a的值。

(3)如果不等式②的解集都是不等式①的解,求a的值。

?x?a?0例2、已知关于的不等式组?的整数解共有3个,则的取值范围是.

1?x?0?

例3、5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工

作.拟派30名医护人员,携带20件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.

(1)设租用甲种汽车辆,请你设计所有可能的租车方案;

(2)如果甲、乙两种汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱

的租车方案.

练习 一、判断

1.若ac2>bc2,则a-3>b-3.( )

ab2.若2<2,则a<b( )

cc3.若a>b,则ac>bc( ) 4.若a>b,则ac2>bc2( )

一元一次不等式教案

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

一元一次不等式教案

第二章 一元一次不等式与一元一次不等式组

4.一元一次不等式(二)

一、学生知识状况分析

学生的知识技能基础:学生已经学习了一元一次不等式的概念和不等式的基本性质,知道解一元一次不等式的依据是不等式的三个基本性质,并且会解简单的一元一次不等式,而且能在数轴上表示其解集。

学生活动经验基础:在方程与方程组的知识学习过程中,学生已经经历了将生活中的数学现象抽象为数学问题或数学模型的形式,获得并积累了解决实际问题的数学经验的基础,同时在以前的学习中学生已经有了很多合作的过程,具备了一定的合作交流能力。

二、教学任务分析

本节课的教学任务是用不等式解决简单的实际问题,难度不大,可以采用通过教师出示问题,学生自主学习、互相交流、解决问题的方式处理,从而提高课堂教学效率。根据实际问题中的不等关系列不等式,对部分学生来说还会有一定的困难,可以采用学生尝试解决、师生交流、总结方法、巩固运用等环节予以解决。因此本课时的目标为:

(一)教学目标:

(1)知识与技能目标: ①进一步熟练掌握解一元一次不等式的解法;

②利用一元一次不等式解决简单的实际问题。

(2)过程与方法目标:

通过分析实际问题中的不等关系,建立不等式模型,通过对不等式的求解对实际问题的解决,训练学

一元一次不等式复习

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

不等式复习

知识要点

(一) 一元一次不等式(组)的有关概念

1.不等式:用 表示不等关系的式子,叫做不等式。

2.不等式的解:能使不等式成立的 的值,叫做不等式的解. 3.不等式的解集:对于一个含有未知数的不等式,它的 , 叫做这个不等式的解集.

4.一元一次不等式:只含有 个未知数,并且未知数的最高次数是 的不等式,叫做一元一次不等式.

5.不等式组:几个含有相同未知数的 合起来,构成一个不等式组。

6.不等式组的解集:不等式组中各个不等式的解集的 ,叫做不等式组的解集. (二) 不等式的基本性质

性质1:不等式的两边都加上(或减去)同一个数或同一个整式,不等号 的方向不变。

即:如果a>b,那么a±c>b±c.

性质2:不等式的两边都乘(或除以)同一个正数,不等号的方向不变。

ab即:如果a>b,c>0,那么ac>bc(或 c?c). 性质3:不等式的两边都乘(或除以)同一个负数,不等号的方向改变。

ab即:如果a>b,c<0,那么ac

).

1.解一元一次不等式与解一元一次方程的步骤基本相同:

去分母,去 , ,合并

一元一次不等式教案

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

一元一次不等式教案

第二章 一元一次不等式与一元一次不等式组

4.一元一次不等式(二)

一、学生知识状况分析

学生的知识技能基础:学生已经学习了一元一次不等式的概念和不等式的基本性质,知道解一元一次不等式的依据是不等式的三个基本性质,并且会解简单的一元一次不等式,而且能在数轴上表示其解集。

学生活动经验基础:在方程与方程组的知识学习过程中,学生已经经历了将生活中的数学现象抽象为数学问题或数学模型的形式,获得并积累了解决实际问题的数学经验的基础,同时在以前的学习中学生已经有了很多合作的过程,具备了一定的合作交流能力。

二、教学任务分析

本节课的教学任务是用不等式解决简单的实际问题,难度不大,可以采用通过教师出示问题,学生自主学习、互相交流、解决问题的方式处理,从而提高课堂教学效率。根据实际问题中的不等关系列不等式,对部分学生来说还会有一定的困难,可以采用学生尝试解决、师生交流、总结方法、巩固运用等环节予以解决。因此本课时的目标为:

(一)教学目标:

(1)知识与技能目标: ①进一步熟练掌握解一元一次不等式的解法;

②利用一元一次不等式解决简单的实际问题。

(2)过程与方法目标:

通过分析实际问题中的不等关系,建立不等式模型,通过对不等式的求解对实际问题的解决,训练学

一元一次不等式教学反思

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

《一元一次不等式组》教学反思

对于教师来说,“反思教学” 就是教师自觉地把自己的课堂教学实践, 作为认识对象而进行全面而深入的冷静思考和总结,它是一种用来提高自身的业务,改进教学实践的学习方式,不断对自己的教育实践深入反思,积极探索与解决教育实践中的一系列问题。简单地说,教学反思就是研究自己如何教,自己如何学。教中学,学中教。如在《一元一次不等式组》这节课中我就有很多的收获。

这节课学生的探究活动比较多,教师既要全局把握,又要顺其自然,经历探索求一元一次不等式组解集的过程,并培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展逻辑推理能力和有条理的表达能力,从而使他们能①准确的解一元一次不等式;②能正确地找出几个一元一次不等式解集的公共部分。 在教学过程中,我利用生活中的实际问题,使学生感知到要解决的问题同时满足两个约束条件,而两个约束条件都是不等式,这样,引入不等式组就比较自然;在探究“不等式组的解集”时,引导学生运用数形结合的方法,引起了学生探究的兴趣,学生小组合作探究,利用已有知识,很容易得出求不等式组解集的方法。用数形结合的方法,通过借助数轴找出公共部分解出解集,这是最容易理解的方法,也是最适用的方法。至于用“同大取大、同小取小、

课时13 一元一次不等式

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

课时13 一元一次不等式(组)及其应用

【课前热身】

1.某商贩去菜摊买黄瓜,他上午买了30斤,价

x格为每斤元;下午,他

20又买了斤,价格为每斤

元.后来他以每斤

元的价格卖完后,结果发现自己赔了钱,其原因是( )

yx?y2x?yx?yA. B. x?yx?yC. D.

1

2.某电脑用户计划使用不超过530元的资金购买单价为70元的单片软件和80元的盒装磁盘,根据需要,软件至少买3片,磁盘至少买2盒,不相同的选购方式共存( ) A.4种 B.5种 C.6种 D.7种

2

3.已知一个矩形的相邻两边长分别是3cm和

xcm,若它的周长小于

14cm,面积大于6cm,则x2的取值范围在数轴上表示正确的是( )

3

?x?y??3?4. 若方程组?x?2y?a?3的

解是负数,那么a的取值范围是 .

【考点链接】

1.求不等式(组)的特殊解:

不等式(组)的解往往有无数多个,但其特殊解在某些范围内是有限的,如整数解,非负整数解,求这些特殊解应先确定不等式(组)

4

的解集,然后再找到相应答案.

2.列不等式(组)解应用题的一般步骤:

①审:审题,分析题

一元一次不等式解法反思

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

一元一次不等式的解法反思

王秀梅

在讲完不等式的性质后,我们根据学生情况安排4个课时学习解一元一次不等式,我们的设想是:第一课时:在简单理解不等式的基本性质的基础上,类比一元一次方程的解法,学习如何解一元一次不等式,注意其中的区别与联系(即类比思想),学会用数轴直观的表示不等式的解集(数形结合思想);第二课时:熟练解一元一次不等式;第三课时和第四课时:一元一次不等式的应用。

由于本节课计算课,因此整个教学活动教师的讲解比较重要。在教学过程中不能急于求成,适时给予恰当的引导。再通过范例与学生共同经历解一元一次不等式的过程。

一元一次不等式的解法与一元一次方程的解法十分相似,解一元一次方程的依据是等式的性质,而解一元一次不等式的依据是不等式的性质,所以讲授新课之前先复习了不等式的性质和前面刚学过的一元一次不等式的定义。对于一元一次不等式解法的教学中采用探究式的教学方法,首先鼓励学生运用不等式的性质和不等式的解集自主尝试求解,再交流解答过程,并进行适当的归纳总结。类比解方程的方法,并比较其异同。让学生非常清楚地看到不等式的解法与方程的解法的步骤是相同的,只是第一步去分母和最后一步系数化为1,可能使得不等号的方向改变。

在教学过程中,由于通过简单的类