迈克尔逊干涉仪白光干涉现象产生条件

“迈克尔逊干涉仪白光干涉现象产生条件”相关的资料有哪些?“迈克尔逊干涉仪白光干涉现象产生条件”相关的范文有哪些?怎么写?下面是小编为您精心整理的“迈克尔逊干涉仪白光干涉现象产生条件”相关范文大全或资料大全,欢迎大家分享。

迈克尔逊干涉仪调节白光干涉条纹的实验研究

标签:文库时间:2024-07-19
【bwwdw.com - 博文网】

第28卷第6期后勤工程学院学报Vol.28No.6文章编号:1672-7843(2012)06-0067-05doi:10.3969/j.issn.1672-7843.2012.06.012

迈克尔逊干涉仪调节白光干涉条纹的实验研究

武小琴,唐远林,朱肖平,陈俊斌,姚晓玲

(后勤工程学院基础部,重庆401311)

摘要在应用迈克尔逊干涉仪所做的一些精密测量中,对动镜M1

非常重要的。实验室中通常选用白光干涉条纹的零光程差位置作为测量的参照点,进行精确定位是但由

于白光相干长度很短,条纹随光程差变化的范围很小,而且受仪器精密度的局限,所以用

迈克尔逊干涉仪调出清晰的白光干涉条纹一直是实验的难点。实验证明借助透射光栅

和毛玻璃片能够顺利地调节出清晰的白光干涉条纹,并在分析实验现象的基础上,提出

以透射光栅补偿后产生的零光程差位置为参照点,能够更加精确定位实际测量中动镜M1

的位置,从而提高相关测量的精确度。

关键词迈克尔逊干涉仪;白光;相干长度;扩展光源;薄膜干涉;透射光栅

中图分类号:O436.1文献标志码:A

ExperimentalStudyonAdjustmentofWhiteLightInterferenceStreaksbyUsingMichelsonInte

迈克尔逊干涉仪实验报告

标签:文库时间:2024-07-19
【bwwdw.com - 博文网】

迈克尔逊干涉仪的调整与应用

1. 原始数据及处理

1.1 测量钠光灯波长(?Na?589.3nm) 测量次数n 1 2 3 4 5 6 不确定度计算:

M2位置dn(mm) 32.85641 32.87118 32.88615 32.90086 32.91589 32.93072 逐差法 ?di?(dn?3?dn)/3(mm)0.01482 0.01490 0.01486 平均值 平均波长 ?d(mm) 0.01486 ?(nm) 594.4 ?A?2.48?x?2.48?(?di?1ni?di)2=0.00010mm, ?B?0.00004mm

n?1?U?d??A2??B2=0.00011mm U??U2U?d=4.4nm, Ur????100%=0.74%. ?N?1.2 双线的波长差:??Na?0.59nm 测量次数 1 2 3 4 M2位置(mm) 33.10405 33.39630 33.67745 33.97492 逐差法得到?D(mm) 0.28801 ??(nm) 0.61 2.思考题及分析:

2.1、为什么白光干涉不易观察到?

答:两光束能产生干涉现象除满足同频、同向、相位差恒定三个条

迈克尔逊干涉仪实验报告

标签:文库时间:2024-07-19
【bwwdw.com - 博文网】

迈克尔逊和法布里-珀罗干涉仪

摘要:迈克尔逊干涉仪是一种精密光学仪器,在近代物理和近代计量技术中都有着重要的应用。通过迈克尔逊干涉的实验,我们可以熟悉迈克尔逊干涉仪的结构并掌握其调整方法,了解电光源非定域干涉条纹的形成与特点和变化规律,并利用干涉条纹的变化测定光源的波长,测量空气折射率。本实验报告简述了迈克尔逊干涉仪实验原理,阐述了具体实验过程与结果以及实验过程中的心得体会,并尝试对实验过程中遇到的一些问题进行解释。 关键词: 迈克尔逊干涉仪;法布里-珀罗干涉仪;干涉;空气折射率;

一、引言

【实验背景】

迈克尔逊干涉仪是1883年美国物理学家迈克尔逊和莫雷合作,为研究“以太”漂移而设计制造出来的精密光学仪器。它是利用分振幅法产生双光束以实现干涉。通过调整该干涉仪,可以产生等厚干涉条纹,也可以产生等倾干涉条纹,主要用于长度和折射率的测量。法布里-珀罗干涉仪是珀罗于1897年所发明的一种能现多光束干涉的仪器,是长度计量和研究光谱超精细结构的有效工具; 它还是激光共振腔的基本构型,其理论也是研究干涉光片的基础,在光学中一直起着重要的作用。在光谱学中,应用精确的迈克尔逊干涉仪或法布里-珀罗干涉仪,可以准确而详细地测定谱线的波长及其精细结构。 【实

“迈克尔逊干涉仪”实验报告

标签:文库时间:2024-07-19
【bwwdw.com - 博文网】

“迈克尔逊干涉仪”实验报告

【引言】

迈克尔逊干涉仪是美国物理学家迈克尔逊(A.A.Michelson)发明的。1887年迈克尔逊和莫雷(Morley)否定了“以太”的存在,为爱因斯坦的狭义相对论提供了实验依据。迈克尔逊用镉红光波长作为干涉仪光源来测量标准米尺的长度,建立了以光波长为基准的绝对长度标准,即1m=1 553 164.13个镉红线的波长。在光谱学方面,迈克尔逊发现了氢光谱的精细结构以及水银和铊光谱的超精细结构,这一发现在现代原子理论中起了重大作用。迈克尔逊还用该干涉仪测量出太阳系以外星球的大小。

因创造精密的光学仪器,和用以进行光谱学和度量学的研究,并精密测出光速,迈克尔逊于1907年获得了诺贝尔物理学奖。

【实验目的】

(1)了解迈克尔逊干涉仪的原理和调整方法。 (2)测量光波的波长和钠双线波长差。

【实验仪器】

迈克尔逊干涉仪、He-Ne激光器、钠光灯、扩束镜

【实验原理】

1.迈克尔逊干涉仪结构原理

图1是迈克尔逊干涉仪光路图,点光源S发出的光射在分光镜G1,G1右表面镀有半透半反射膜,使入射光分成强度相等的两束。反射光和透射光分别垂直入射到全反射镜M1和M2,它们经反射后再回到G1的半透半反射膜处,再分别经过透射和反射后

迈克尔逊干涉仪的原理与应用

标签:文库时间:2024-07-19
【bwwdw.com - 博文网】

迈克尔逊干涉仪的原理与应用

在大学物理实验中,使用的是传统迈克尔逊干涉仪,其常见的实验内容是:观察等倾干涉条纹,观察等厚干涉条纹,测量 激光或钠光的波长,测量钠光的双线波长差,测量玻璃的厚度或折射率等。 由于迈克尔逊干涉仪的调节具有一定的难度,人工计数又比较枯燥,所以为了激发学生的实验兴趣,增加学生的科学知识,开阔其思路,建议在课时允许的条件下,向学生多介绍一些迈克尔逊干涉仪的应用知识。这也是绝大多数学生的要求。下面就向大家介绍一些利用迈克尔逊干涉仪及其原理进行的测量。

一、传统迈克尔逊干涉仪的测量应用

1. 微小位移量和微振动的测量[11-14];采用迈克尔逊干涉技术,通过测量KDP晶体生长的法向速率和台阶斜率来研究其台阶生长的动力学系数、台阶自由能、溶质在边界层内的扩散特征以及激发晶体生长台阶的位错活性。He-Ne激光器的激光通过扩束和准直后射向分束镜,参考光和物光分别由反射镜和晶体表面反射,两束光在重叠区的干涉条纹通过物镜成像,该像用摄像机和录像机进行观察和记录.滤膜用于平衡参考光和物光的强度.

纳米量级位移的测量:将迈克尔逊型激光干涉测量技术应用于环规的测量中。采用633nm稳频的

He-Ne激光波长作为测量基准,采用干涉条纹计

大学物理实验-迈克尔逊干涉仪

标签:文库时间:2024-07-19
【bwwdw.com - 博文网】

大学物理实验-迈克尔逊干涉仪

(1312实验室)迈克尔逊干涉仪实验

一.实验目的

(1)了解迈克尔逊干涉仪的光学结构及干涉原理,学习其调节和使用方法

(2)学习一种测定光波波长的方法,加深对等倾的理解

(3)用逐差法处理实验数据

二.实验仪器

迈克尔逊干涉仪、He-Ne激光器、扩束镜等。

三.实验原理

迈克尔逊干涉仪是l883年美国物理学家迈克尔逊(A.A.Michelson)和莫雷(E.W.Morley)合作,为研究“以太漂移实验而设计制造出来的精密光学仪器。用它可以高度准确地测定微小长度、光的波长、透明体的折射率等。后人利用该仪器的原理,研究出了多种专用干涉仪,这些干涉仪在近代物理和近代计量技术中被广泛应用。

1.干涉仪的光学结构

迈克尔逊干涉仪的光路和结构如图1与2

所示。M1、M2是一对精密磨光的平面反射镜,

M1的位置是固定的,M2可沿导轨前后移动。G1、

G2是厚度和折射率都完全相同的一对平行玻璃

板,与M1、M2均成45°角。G1的一个表面镀

有半反射、半透射膜A,使射到其上的光线分为

光强度差不多相等的反射光和透射光;G1称为

分光板。当光照到G1上时,在半透膜上分成相

互垂直的两束光,透射光(1)射到M1,经M1

反射后,透过G2,在G1的半透膜上反射后

迈克尔逊干涉仪研究性实验报告

标签:文库时间:2024-07-19
【bwwdw.com - 博文网】

迈克尔逊干涉仪研究性实验报告

摘要

迈克尔逊干涉仪是1883年迈克尔逊和莫雷为了研究以太漂移所设计的精密光学仪器,它是利用分振幅法产生双光束以实现干涉,通过调整该干涉仪,可以产生等厚干涉条纹,也可以产生等倾干涉条纹。迈克尔逊干涉仪利用光的波长为参照,首次把人类的测量精度精确到纳米级,在近代物理学和近代计量科学中,具有重大的影响,更是得到了广泛应用,特别是20世纪60年代激光出现以后,各种应用就更为广泛。

一、实验原理

1.迈克尔逊干涉仪的光路

如图1所示,从光源发出的遗嘱光射在分束板P1上,将光束分为两部分:一部分从P1的半反射膜处反射,射向平面镜M2;另一部分从P1透射,射向平面镜M1。因P1和全反射镜M1、M2均成45°角,所以两束光均垂直射到M1、M2上。从M2反射回来的光透过半反射膜;从M1反射回来的光被半反射膜反射。二者汇聚成一束光,在E处即可观测到干涉条纹。光路中另一平行平板P2与P1平行,其材料及厚度与P1完全相同,以补偿两束光的光程差,成为补偿板。

反射镜M1是固定的,M2在精密导轨上前后移动,以改变两束光之间的光程差。M1,、M2后面各有三个螺钉来调节平面镜的方位,M1的下方还附有两个方向互相垂直的弹簧,松紧他们,能使M1

实验 11迈克尔逊干涉仪测光波波长

标签:文库时间:2024-07-19
【bwwdw.com - 博文网】

实验 11迈克尔逊干涉仪测光波波长

1.迈克尔逊干涉形成的等倾干涉条纹的条件、条纹的特点、条纹出现的位置和测量波长的公式。比较等倾干涉条纹和牛顿环(等厚干涉)异同。 提示:(1)迈克尔逊干涉形成等倾干涉条纹的条件:①M1、M 2(M2在 M1镜附近的虚像)两反射镜互相平行。②产生干涉的两束光应是相干光,且光程差要满足明暗条纹条件; (2)条纹的特点包括条纹形状、条纹分布,条纹级数、条纹属性(等倾还是等厚)以及条纹的变化;

(3)条纹出现的位置是指条纹所在位置。(迈克尔逊干涉用的光源是光纤激光(点光源)条纹出现的位置是在两虚光源发出的两相干光相遇的范围,是非定域的,等厚干涉用的光源是面光源钠光,条纹出现的位置在牛顿环装置表面附近,是定域的)。

(4)实验测量波长公式:(△N为条

纹变化(冒出或陷入)条数,

△h为M1、M2镜间的空气薄膜厚度的变化)。

(5)用迈克尔逊干涉仪观察到的等倾干涉条纹与牛顿环的干涉条纹异同:二者虽然都是中间疏边缘密明暗相间的同心圆条纹,但牛顿环属于等厚干涉的结果,并且等倾干涉条纹中心级次高,而牛顿环则是边缘的干涉级次高,所以当增大(或减小)空气层厚度时,等倾干涉条纹会向外涌出(或向中心缩进),而牛顿环则会向中心缩

实验七 迈克尔逊干涉仪的调整与使用

标签:文库时间:2024-07-19
【bwwdw.com - 博文网】

实验七 迈克尔逊干涉仪的调整与使用

迈克尔逊干涉仪在近代物理学的发展中起过重要作用。十九世纪末,迈克尔逊(Michelson)与其合作者曾用此仪器进行了“以太漂移”实验,标定米尺及推断光谱线精细结构等三项著名的实验。

第一项实验解决了当时关于“以太”的争论,并为爱因斯坦发现相对论提供了实验依据;第二项工作实现了长度单位的标准化。迈克尔逊发现镉红线(波长 = 643.84696nm)是一种理想的单色光源。可以用它的波长作为米尺标准化的基准。他定义1m = 155316413镉红线波长,精度达到10-9,这项工作对近代计量技术的发展作出了重要贡献;迈克尔逊研究了干涉条纹视见度随光程差变化的规律,并以此推断光谱线的精细结构。这是干涉分光技术的最早工作。今天,迈克尔逊干涉仪已被更完善的现代干涉仪取代,例如米尺的标定及干涉分光工作已改用法布里——珀罗干涉仪。但迈克尔逊干涉仪的基本结构仍然是许多现代干涉仪的基础。因此选用它作为教学实验仪器无疑是具有典型意义的。 【实验目的】

1.掌握迈克尔逊干涉仪的调节和使用方法。 2.学会用迈克尔逊干涉仪测He-Ne激光波长。 【实验仪器】

迈克尔逊干涉仪

迈克尔逊干涉仪是用分振幅法获得双光束干涉的精密仪器,它主要由

组装迈克尔逊干涉仪测定空气折射率

标签:文库时间:2024-07-19
【bwwdw.com - 博文网】

组装迈克尔逊干涉仪测定空气折射率

迈克尔逊干涉仪中的两束相干光各有一段光路在空间是分开的,两相干光束的光程差的改变可以通过移动一个反射镜或在一光路中加入另一种介质得到,在其中一条光路中放进被研究对象不会影响另一光路,因此,常用它来测量,如物质的折射率、厚度的变化、气压等一切可以转化为光程变化的物理量。

本实验用分立光学元件在光学平台上搭建迈克尔逊干涉装置,在干涉仪的一个臂中插入小气室来测定空气的折射率。

一、实验目的

1.通过自行搭建干涉装置,掌握分振幅法产生双光束以实现干涉的原理。 2.观察非定域干涉条纹。

3.掌握用干涉条纹计数法测量空气折射率的原理与方法。

二、实验仪器

光学平台、激光器及电源、扩束器、分光镜、平面镜、气室及打气囊、接收屏、若干光学支架和底座。

M1 M2′

三、实验原理

最简单形式的迈克耳孙干涉仪如图1所

激光器 S

G

M2

示。从点光源S发出的光束,被精制的厚度和折射率均匀的玻璃板(分束器)G分成两路,射向互相垂直的两个平面镜M1和M2。被平的是非定域干涉条纹,用毛玻璃屏FG接收。

FG接收到的干涉图样是M1和M2'之设M2'是M2在G中的虚像。可以认为,

图1

FG

面镜反射后,又回到分束器有镀膜的半反射面