有关一次函数的题目以及答案
“有关一次函数的题目以及答案”相关的资料有哪些?“有关一次函数的题目以及答案”相关的范文有哪些?怎么写?下面是小编为您精心整理的“有关一次函数的题目以及答案”相关范文大全或资料大全,欢迎大家分享。
一次函数典型题目
一次函数专题练习
一.选择题(共2小题) 1.(2013?重庆)2013年“中国好声音”全国巡演重庆站在奥体中心举行.童童从家出发前往观看,先匀速步行至轻轨车站,等了一会儿,童童搭乘轻轨至奥体中心观看演出,演出结束后,童童搭乘邻居刘叔叔的车顺利回到家.其中x表示童童从家出发后所用时间,y表示童童离家的距离.下面能反映y与x的函数关系的大致图象是( ) A. B. C. D. 2.(2013?自贡)如图,已知A、B是反比例函数
上的两点,BC∥x轴,交y轴于C,动点P
从坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过运动路线上任意一点P作PM⊥x轴于M,PN⊥y轴于N,设四边形OMPN的面积为S,P点运动的时间为t,则S关于t的函数图象大致是( )
A. B. C. D.
二.解答题(共21小题) 3.(2012?聊城)如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2). (1)求直线AB的解析式;
(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.
4.(2012?抚顺)如图,已知一次函数y=﹣x+b的图象经过点A(2,3),AB⊥x轴,垂足为B,连接OA. (1)求此一次函
一次函数25.5 一次函数的应用
《一次函数》常考题一次函数的应用
解答题
151.(2004?福州)如图所示,l1和l2分别表示一种白炽灯和一种节能灯的费用y(元)与照明时间x(小时)的函数关系图象,假设两种灯的使用寿命都是2000小时,照明效果一样.(费用=灯的售价+电费) (1)根据图象分别求出l1,l2的函数关系式; (2)当照明时间为多少时,两种灯的费用相等?
(3)小亮房间计划照明2500小时,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法.
152.(2001?南京)某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药后2小时时血液中含药量最高,达每毫升6微克(1微克=10毫克),接着逐步衰减,10小时时血液中含药量为每毫升3微克,每毫升血液中含药量y(微克),随时间x(小时)的变化如图所示. 当成人按规定剂量服药后,
(1)分别求出x≤2和x≥2时,y与x之间的函数关系式;
(2)如果每毫升血液中含药量为4微克或4微克以上时在治疗疾病时是有效的,那么这个有效时间是多长?
﹣3
153.(2002?大连)某批发商欲将一批海产品由A地运往B地,汽车货运公司和铁路货运公司均开办了海产品运输业务.已知运输路程为120千米,
19.2.2一次函数(2)一次函数的图像和性质
提问复习 1、什么叫正比例函数、一次函数?它 们之间有什么关系? 一般地,形如 y=kx(k是常数,k≠0) 的函数, 叫做正比例函数; 一般地,形如 y=kx+b(k,b是常数,k≠0) 的函数,叫 做一次函数。
当b=0时,y=kx+b就变成了 y=kx ,所以说正 比例函数是一种特殊的一次函数。 2、正比例函数的图象是什么形状? 正比例函数的图象是(经过原点的一条直线
)
3、正比例函数 y=kx(k是常数,k≠0)中, k的正负对函数图象有什么影响?y=kx 图 象y
性 质经过一、三象限 y随x增大而增大
K>0y
x
K<0
x
经过二、四象限 y随x增大而减小
既然正比例函数是特殊的一次 函数,正比例函数的图象是直线, 那么一次函数的图象也会是一条直 线吗? 它们图象之间有什么关系? 一次函数又有什么性质呢?
探索新知1、认识一次函数的图像画图:请大家用描点法在同一坐标系中画出函数函数y=-2x, y=-2x+3,y=-2x-3的图象。
1、列表 x y=-2x
2、描点 … -2 … 4 -1 0
3、连线 2 … -2 -4 … 1 -1 … 1
25 -1
03
y=-2x+3 … 7 y=-2x-3 … 1
-3 -5 -7 …
比一比:正比例函
一次函数的教案
课题:变量与函数(1) 总第1课时
教学目标:认识变量、常量;学会用含一个变量的代数式表示另一个变量;在理解掌握函数概念的基础上,确定函数关系式.
教学重点:认识变量、常量;用式子表示变量间关系. 教学难点:用含有一个变量的式子表示另一个变量. 教学过程:
一、创设情境,引入新课:
情景问题:一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米.?行驶时间为t小时.
1.请同学们根据题意填写下表: t/时 1 2 3 4 5 s/千米 2.在以上这个过程中,变化的量是________.不变化的量是__________. 3.试用含t的式子表示s.s= ,t的取值范围是 .
4.这个问题反映了匀速行驶的汽车所行驶的路程s随行驶时间t的变化过程.其实现实生活中有好多类似的问题,都是反映不同事物的变化过程,其中有些量的值是按照某种规律变化,如上例中的时间t、?路程s,有些量的数值是始终不变的,如上例中的速度60千米/小时. 二、深入探究,得出结论:
问题二:每张电影票的售价为10元,如果早场售出票150张,
一次函数的应用
一次函数的应用
◆【课前热身】
1.在平面直角坐标系中,函数y??x?1的图象经过( )
A.一、二、三象限 B.二、三、四象限 C.一、三、四象限 D.一、二、四象限
2.小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是( ) A.12分钟
B.15分钟
C.25分钟
D.27分钟
3.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量为( )
y(元)900300O3050(kg)x
A.20kg B.25kg C.28kg D.30kg 4.一次函数y?2x?3的图象不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限 ◆【考点聚焦】
??一般式y=kx+b(k?0)概念???正比例函数y=kx(
一次函数的应用
一次函数的应用
姓名:
基础题型演练:
1、某出版社出版一种适合中学生阅读的科普读物,若该读物首次印刷的印数不少于5000册时,投入的成本与印数间的相应数据如下:
次函数,求这个一次函数的解析式(不要求写出x的取值范围);
(2)如果出版社投入48000元,那么能印读物多少册?
2、为加强公民的节水意识,某城市制定了以下用水收费标准:每户每月用水未超过7 m3时,每立方米收费1.0元并加收0.2元的城市污水处理费;超过7 m3的部分每立方米收费
1.5元并加收0.4元的城市污水处理费.设某户每月用水量为x(m3),应交水费为y(元).
(1)分别写出未超过7 m3和多于7 m3时,y与x的函数关系式;(2)如果某单位共有50户,某月共交水费541.6元,且每户的用水量均未超过10 m3,求这个月用水未超过7 m3的用户最多可能有多少户?
3、如图,折线ABC是在某市乘出租车所付车费y(元)与行车里程x(km) 之间的函数关系图象. ①根据图象,写出当x≥3时该图象的函数关系式; ②某人乘坐2.5km,应付多少钱?
③某人乘坐13km,应付多少钱?
④若某人付车费30.8元,出租车行驶了多少千米?
例1:学校有一批复印任务,原来有甲复印社承接,按每100页40元计费.
一次函数复习
临河八中“题组教学法”学案
§课题: 第19章一次函数复习(第一课时)
班级 学生姓名 小组 授课日期 学案编号 备课 教师 杨喜娥 授课 教师 审核 教师 课后 反思 教师寄语:如果知识不是每天在增加,就会不断地减少。 学生 目标一:通过简单实例,了解常量、变量的意义。 纠错 题组一、 1.圆周长公式C=2πR中,下列说法正确的是( ) (A)π、R是变量,2为常量 (B)C、R为变量,2、π为常量 (C)R为变量,2、π、C为常量 (D)C为变量,2、π、R为常量 2. 常量和变量是在“某一变化过程中”来研究确定的,以s=vt为例若速度v固定,则常量是________,变量是________; 目标二:能结合实例,了解函数的概念和三种表示方法,能举出函数的实例。 题组二、 1.下列各图给出了变量x与y之间的函数是( )。 y y y y o o o o x x x x CBDA 2. 下列关系式中,y不是x的函数关系的是( ) xA.y? B . y?2x2 C . y?x(x?0) D.y?
一次函数习题
寒假辅导习题练习(一):一次函数
第一部分:选择题
1.下列函数中,自变量x的取值范围是x≥2的是( ) A.y=2?x B.y=2.下面哪个点在函数y=
121x?2 C.y=4?x2 D.y=x?2〃x?2
x+1的图象上( )
A.(2,1) B.(-2,1) C.(2,0) D.(-2,0) 3.下列函数中,y是x的正比例函数的是( ) A.y=2x-1 B.y=
x3 C.y=2x2 D.y=-2x+1
4.一次函数y=-5x+3的图象经过的象限是( ) A.一、二、三 B.二、三、四 C.一、二、四 D.一、三、四
6.若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是( )
A.k>3 B.0 7.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( ) A.y=-x-2 B.y=-x-6 C.y=-x+10 D.y=-x-1 8.汽车开
一次函数教案
目录
第一篇:一次函数(一)教案 第二篇:一次函数性质教案 第三篇:教案-一元一次不等式与一次函数 第四篇:一次函数与一元一次不等式说课稿 教案及反思 第五篇:(新课程)高中数学 《2.2.1 一次函数的性质与图像》教案 新人教b版必修1 更多相关范文正文
第一篇:一次函数(一)教案
§11.2.2一次函数(一)教案2014-10-31伊通三中李金雪 一、教学目标
理解正比例函数的概念 掌握正比例函数解析式特点 二、教学重点
正比例函数解析式(请关注好 范 文 网气温下降6℃.登山队员由大本营向上登高xkm时,他们所处位置的气温是y℃.试用解析式表示y?与x的关系.
这个函数与我们上节所学的正比例函数有何不同?它的图象又具备什么特征?我们这节课将学习这些问题.ⅱ.导入新课
我们先来研究下列变量间的对应关系可用怎样的函数表示?它们又有什么共同特点?
1.有人发现,在20~25℃时蟋蟀每分钟鸣叫次数c与温度t(℃)有关,即c?的值约是t的7倍与35的差.
2.一种计算成年人标准体重g(kg)的方法是,以厘米为单位量出身高值h减常数105,所得差是g的值.
3.某城市的市内电话的月收费额y(元)包括:月租费
一次函数复习
临河八中“题组教学法”学案
§课题: 第19章一次函数复习(第一课时)
班级 学生姓名 小组 授课日期 学案编号 备课 教师 杨喜娥 授课 教师 审核 教师 课后 反思 教师寄语:如果知识不是每天在增加,就会不断地减少。 学生 目标一:通过简单实例,了解常量、变量的意义。 纠错 题组一、 1.圆周长公式C=2πR中,下列说法正确的是( ) (A)π、R是变量,2为常量 (B)C、R为变量,2、π为常量 (C)R为变量,2、π、C为常量 (D)C为变量,2、π、R为常量 2. 常量和变量是在“某一变化过程中”来研究确定的,以s=vt为例若速度v固定,则常量是________,变量是________; 目标二:能结合实例,了解函数的概念和三种表示方法,能举出函数的实例。 题组二、 1.下列各图给出了变量x与y之间的函数是( )。 y y y y o o o o x x x x CBDA 2. 下列关系式中,y不是x的函数关系的是( ) xA.y? B . y?2x2 C . y?x(x?0) D.y?