谁围出的面积最大数学思想方法
“谁围出的面积最大数学思想方法”相关的资料有哪些?“谁围出的面积最大数学思想方法”相关的范文有哪些?怎么写?下面是小编为您精心整理的“谁围出的面积最大数学思想方法”相关范文大全或资料大全,欢迎大家分享。
谁围出的面积最大
《谁围出的面积最大》教学设计
教学内容:谁围出的面积最大 教学目标:
1、通过围一围的具体操作,探究周长相等时面积的大小与长、宽的关系; 2、在探究中加深对长方形(包括正方形)周长、面积概念的理解; 3、让学生在动手操作的活动中获得成功体验。 教学重点:
发展学生动手操作能力,培养学生记录、整理个、观察、总结的能力 教学准备:课件、课堂练习
教学过程: 一、故事引入:
喜羊羊和灰太狼的故事:
灰太狼: 给你这根绳子,你能圈出的地盘就是你归的了 懒羊羊: 长方形 美羊羊: 正方形 喜羊羊: 圆
同学们你们说谁的主意好?
你能说清其中的原由吗?那让我们一起来研究,希望你从中有所发现。 今天我们研究的主题就是:谁围出的面积最大。(板书课题) 二、 推导验证:
这围一围有什么前提条件吗?(绳子----周长相等)
那就当灰太狼给我们每人一根24米长的绳子吧!
1、 表格的生成:
用24米长的绳子,可以围成多少种不同的长方形? ⑴ 动手在点子图上画一画 (课堂练习纸上画一画)
要求:先想清楚再动手哦!想想你要画的长方形长最多能是多少? ⑵ 根据学生的图,板书数据表 周长:26m
(实物投影显示图 板书)
1182703351-embed-数学广场谁围出的面积最大
数学广场——谁围出的面积最大
教学内容:
上海市九年义务教育课本(试用本)三年级第二学期P71
教学目标:
⒈通过围长方形(包括正方形)的活动,探究“长方形(包括正方形)周
长相等时,长、宽与面积之间的关系”。
⒉在探究中加深对长方形(包括正方形)周长、面积概念的理解,巩固长
方形(包括正方形)周长和面积的计算。
⒊发展学生的动手操作能力,培养学生记录、整理、观察、总结的能力。
教学重点:
⒈巩固长方形(包括正方形)周长和面积的计算。
⒉发展学生的动手操作能力,培养学生记录、整理、观察、总结的能力。
教学难点:
探究“长方形(包括正方形)周长相等时,长、宽与面积之间的关系”。
教学过程:
一、创设情境 出示课页图
用20根火柴棒来围长方形(包括正方形) 板:围周长相等的长方形(包括正方形)
二、合作探究
㈠ 围出各种不同的长方形(包括正方形) 1. 动手操作
师:小组合作用20根火柴棒围出不同的长方形,每根火柴的长度当作1米。
每一次都要将20根火柴棒正好用完,围一个就在表格中记录一个,比一比在规定的时间内哪个小组设计的方案最多 2. 集体交流
(师根据学生回答,有序地记录在黑板上)
论文:数学思想方法
数学思想方法
河南省虞城县李老家乡第二初级中学;高华增
数学思想方法一般是指人们在数学的发生、形成、发展过程中总结概括出来的数学规律的本质认识,是利用数学知识去解决问题的思维策略和指导思想,它为数学知识的学习和运用提供了方向,是解决数学问题的“向导”,数学思想的产生并作用于数学学习的整个过程中,尤其是在解决复杂的综合题时,数学思想的合理运用起着关键性的决定作用,数学思想方法是数学思想的具体体现,不仅是学习和运用数学知识的解决数学问题应具备的、最基本的思想方法.而且是新课标改革的方向和中考试题解题特征
常见的数学思想方法有:化归思想方法、数形结合思想方法、分类讨论思想方法、数学建模思想方法、方程思想方法、函数思想方法、整体思想方法,对此类问题的突破,方法具体如下:
类型一:化归思想方法: 重难点突破:解决问题的基本思想就是化
未知为已知,把复杂的问题简单化,把生疏的问题熟悉化,把实际问题数学化,不同的数学问题相互转化,也体现了把不易解决的问题转化为有章可循,容易解决的问题的思想
【例1】 如下图中每个阴影部分是以多边形各顶点为圆心,1为半径
的扇形,并且所有多边形的每条边都大于2,则第n个多边形中,所有扇形面积之和是______.(结果保留π)
小学数学思想方法
小学毕业生数学学习材料(二)
小学数学思想方法
小学数学是一门基础学科。小学数学中不仅包括了大量的数学基础知识,而且在学习和运用这些数学知识的过程中,还以潜移默化的方式渗透了一些重要的数学思想方法。本讲义从较高的视点出发,对已有的关于数学思想方法零散而模糊的感性认识,进行科学地、系统地概括,结合一些经过精选的数学竞赛题目,进行深入细致的讲解,并且安排了必要的和适量的练习,力求通过学习,对一些常用的数学思想方法和技巧能够明确认识,融会贯通,以提高数学思维能力和解题能力,为更好地为适应初中数学的学习打下良好的基础。
第一讲 从简单情况找规律
当一个问题非常复杂时,首先就要想到,其中是否隐藏着某种规律,如果能找到这种规律,问题就会迎刃而解。探索规律,往往要利用已有的知识和经验,从简单的、熟悉的地方开始,从粗略的估计开始,同时注意极端的情况,如最大、最小等。
例1 1995个7连乘,积的个位数字是多少?(北京市“迎春杯”数学竞赛题)
解:71=7,个位数字是7;72=49,积的个位数字是9;73=343,积的个位数字是3;74=2401,积的个位数字是1;75=16807,积的个位数字是7。 观察发现,随着因数的增加,积的个位数字按“7
小学数学思想方法的梳理
小学数学思想方法的梳理(一) 王永春(课程教材研究所)
数学思想和数学方法既有区别又有密切联系。数学思想的理论和抽象程度要高一些,而数学方法的实践性更强一些。人们实现数学思想往往要靠一定的数学方法;而人们选择数学方法,又要以一定的数学思想为依据。因此,二者是有密切联系的。我们把二者合称为数学思想方法。数学思想方法是数学的灵魂,那么,要想学好数学、用好数学,就要深入到数学的“灵魂深处”。
《数学课程标准》在总体目标中明确提出:“学生能获得适应未来的社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法和必要的应用技能。”这一总体目标贯穿于小学和初中,这充分说明了数学思想方法的重要性。在小学阶段有意识地向学生渗透一些基本的数学思想方法可以加深学生对数学概念、公式、法则、定律的理解,提高学生解决问题的能力和思维能力,也是小学数学进行素质教育的真正内涵之所在。同时,也能为初中数学思想方法的学习打下较好的基础。在小学阶段,数学思想方法主要有符号化思想、化归思想、类比思想、归纳思想、分类思想、方程思想、集合思想、函数思想、一一对应思想、模型思想、数性结合思想、演绎推理思想、变换思想、统计与概率思想等等。
为了使广大小学数学教师在教学中能很好地渗透
小学数学思想方法的梳理(七)
小学数学思想方法的梳理(七)
七、分类讨论思想
1.分类讨论思想的概念。 人们面对比较复杂的问题,有时无法通过统一研究或者整体研究解决,需要把研究的对象按照一定的标准进行分类并逐类进行讨论,再把每一类的结论综合,使问题得到解决,这种解决问题的思想方法就是分类讨论的思想方法。其实质是把问题“分而治之、各个击破、综合归纳”。其分类规则和解题步骤是:(1)根据研究的需要确定同一分类标准;(2)恰当地对研究对象进行分类,分类后的所有子项之间既不能“交叉”也不能“从属”,而且所有子项的外延之和必须与被分类的对象的外延相等,通俗的说就是要做到“既不重复又不遗漏”;(3)逐类逐级进行讨论;(4)综合概括、归纳得出最后结论。
分类讨论既是解决问题的一般的思想方法,适应于各种科学的研究;同时也是数学领域问题较常用的思想方法。
2.分类讨论思想的重要意义。 《课程标准》在总目标中要求学生能够有条理地思考,这种有条理性的思考就是一种有顺序的、有层次的、全面的、有逻辑性的思考,分类讨论就是具有这些特殊的思考方法。因此,分类讨论思想是培养学生有条理地思考和良好数学思维品质的一种重要而有效的方法。无论是解决纯数学问题,还是解决联系实际的问题,都要注意数学原理、公式和方法
小学数学思想方法的梳理(七)
小学数学思想方法的梳理(七)
七、分类讨论思想
1.分类讨论思想的概念。 人们面对比较复杂的问题,有时无法通过统一研究或者整体研究解决,需要把研究的对象按照一定的标准进行分类并逐类进行讨论,再把每一类的结论综合,使问题得到解决,这种解决问题的思想方法就是分类讨论的思想方法。其实质是把问题“分而治之、各个击破、综合归纳”。其分类规则和解题步骤是:(1)根据研究的需要确定同一分类标准;(2)恰当地对研究对象进行分类,分类后的所有子项之间既不能“交叉”也不能“从属”,而且所有子项的外延之和必须与被分类的对象的外延相等,通俗的说就是要做到“既不重复又不遗漏”;(3)逐类逐级进行讨论;(4)综合概括、归纳得出最后结论。
分类讨论既是解决问题的一般的思想方法,适应于各种科学的研究;同时也是数学领域问题较常用的思想方法。
2.分类讨论思想的重要意义。 《课程标准》在总目标中要求学生能够有条理地思考,这种有条理性的思考就是一种有顺序的、有层次的、全面的、有逻辑性的思考,分类讨论就是具有这些特殊的思考方法。因此,分类讨论思想是培养学生有条理地思考和良好数学思维品质的一种重要而有效的方法。无论是解决纯数学问题,还是解决联系实际的问题,都要注意数学原理、公式和方法
2数学思想方法的几次突破
数学思想方法
第二章 数学思想方法的几次突破 就数学发展的历史进程来看,从算术到代 数、从常量数学到变量数学、从确定性数 学到随机性数学是数学思想方法的几次重 要的突破。
第一节从算术到代数 一、算术的局限性 随着社会的发展,人类认识到算术在理论 上的限制了其自身的发展,主要表现在他 限制抽象的未知数参与运算,只允许具体 的、已知的数进行运算,因而导致其在解 决问题的方法上存在局限性。这种局限性 在很大程度上限制了其应用范围,从而促 使了新的数学分支——代数的产生。
二、代数的产生 算术的内容反映了物体集合数量关系,这 些内容是在分析和概括大量实际经验的基 础上加以抽象出来的,从而产生了纯粹形 式上的算术。 符号化一方面推动了算术的发展,另一方 面也为代数的产生奠定了基础。 代数讨论正整数、正分数和零,还讨论负 数、虚数和复数。其特点是用字母符号表 示各种数,最初的研究的对象主要是代数 式的运算和方程的求解。
代数解题的基本思想是: 首先依据问题的条件组成内含移植术和未 知数的代数式,并按等量关系列出方程, 然后通过对方程进行恒等变换求出未知数 的值。 因此,代数是一门关于形式运算的学说。 代数学形成的三大阶段:文
小学数学思想方法有哪些
小学数学思想方法有哪些?
《课标》(修订稿)把“双基”改变“四基”,即改为关于数学的:基础知识、基本技能、基本思想、基本活动经验.
“基本思想”主要是指演绎和归纳,这应当是整个数学教学的主线,是最上位的思想. 演绎和归纳不是矛盾的,其教学也不是矛盾的,通过归纳来预测结果,然后通过演绎来验证结果.在具体的问题中,会涉及到数学抽象、数学模型、等量替换、数形结合等数学思想, 但最上位的思想还是演绎和归纳.之所以用“基本思想”而不用基本思想方法,就是要与换元法、递归法、配方法等具体的数学方法区别.每一个具体的方法可能是重要的,但它们是个案,不具有一般性.作为一种思想来掌握是不必要的,经过一段时间,学生很可能就忘却了.这里所说的思想,是大的思想,是希望学生领会之后能够终生受益的那种思想方法.
史宁中教授认为:演绎推理的主要功能在于验证结论,而不在于发现结论.我们缺少的是根据情况“预测结果”的能力;根据结果“探究成因”的能力.而这正是归纳推理的能力.
就方法而言,归纳推理十分庞杂,枚举法、归纳法、类比法、统计推断、因果分析,以及观察实验、比较分类、综合分析等均可被包容.与演绎推理相反,归纳推理是一种“从特殊到一般的推理”.
借助归纳推理可以培养学生“预测结果”和“
微积分与数学思想方法
数学思想方法的解释有多种多样,其中胡炯涛《数学教学论》广西教育出版社,一书中指出数学思想方法则是数学知识发生过程中的提炼、抽象、概括和升华,是对数学规律更一般的认识,它蕴藏在数学知识之中,需要学习者去挖掘[6]。数学思想方法分为两部分,一是数学思想,二是数学方法,其中数学思想是指我们对教材中理论知识及内容最本质的认识,而数学方法是数学思想的具体化形式,运用到实际的题目中[20]。下面就具体来阐述一下微积分习题中的数学思想方法: 5.1函数思想
函数思想是我们在中学阶段中常见的一种思想方法,是指用函数的概念、性质、特点去分析问题、转化问题和解决问题的一种思维,函数思想是一个基本的数学思想,方程,不等式问题可以在函数的观点下统一起来,数列是特殊的函数,集合论的知识作为建立函数的基础,也包括在其中[11]。在新版教材微积分的内容中,函数思想更为重要,其中一部分题目就是借助“微积分”这个工具,最后还是依据函数的基本性质去解决问题。例如:
一条长为l的铁丝截成两段,分别弯成两个正方形,要使两个正方形的面积和最小,两段铁丝的长度分别是多少?[12](新版教材人教A版选修2–2课本37页习题)
解:设其中一段铁丝的长度为x,则另一段为l?x,面积为s