高中数学思维训练方法
“高中数学思维训练方法”相关的资料有哪些?“高中数学思维训练方法”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高中数学思维训练方法”相关范文大全或资料大全,欢迎大家分享。
高中数学审题训练方法探究
高中数学审题训练方法探究
教
____I—
Ej
1"=-3中数学审题训练方法探究
林琮举
(福建省永春第五中学,福建泉州)
【摘要】数学教学是以解题为中心的教学.审题是正确解题的关键,可以促进学生将所学数学知识转化为数学思维能力.作
为高中数学教师,我们应当有意识地强化学生的审题意识,对学生进行严格的审题训练,培养他们认真审题的习惯,从而提高学生
解题的能力.
【关键词】数学;高中;审题;解题:思维
数学教学就是以解题为中心的教学.解题中合理选择解
题策略,可以促进学生将所学的数学知识转化为数学思维能
力.随着高考对考生能力考查的加大,不仅考查其所掌握的数
学基础知识,而且考查学生分析问题和解决问题的能力.而作
为考查学生综合能力的解题技巧已成为教学的重点.让学生
掌握高中数学的审题步骤和方法,不断提高学生的解题水平和
解题技巧,成为新时期高中数学教师必须认真研究的课题.
一
,探究高中数学审题训练方法的重要意义
审题足对条件和问题进行全面认识,对条件和问题有关的
全部情况进行分析研究.通过审题,完成目标分析,从而使解
题者把不易把握的目标转化为可把握的目标.高中新课程标
准明确指出:"高中数学课程应注重提高学生的数学思维能力,
这是数学教育的基本目标之一."审题作为解题的第一环节越
来越
高中数学中的逆向思维解题方法探讨
龙源期刊网 http://www.qikan.com.cn
高中数学中的逆向思维解题方法探讨
作者:林海
来源:《考试周刊》2013年第70期
在数学问题的解答过程中,有时从正面入手不易解决,我们不妨从问题条件或结论的反面或者对立面出发,也许会达到“正面困难重重,而反面则海阔天空”的境界.从反面或者对立面入手解决问题的这种思维方法就是逆向思维方法,反映在解证方法上就是反证法.
例1:已知在某20个城市之间共辟有172条航线.试证明:利用这些航线可以从这20个城市中的任何一个城市飞抵其余19个城市中的任何一个城市(包括中转抵达的情形). 分析:如果我们从正面入手排出这20个城市之间的172条航线,就会比较复杂.如果我们从问题结论的反面:20个城市中,存在一个城市A,由A仅能飞抵其余19个城市中的n( 证明:假设这20个城市中存在一个城市A,由A仅能飞抵其余19个城市中的n( 例2:从1000件产品中任意抽取10件进行质量检查.假设这1000件产品中恰好有10件次品.记抽出的10件产品中至少有一件次品的事件为A,求A的概率P(A).
分析:本题若从正面
高中数学拔高训练
大庆市弘文高考辅导学校
高中数学实验班讲义
目录
第一章 第二章
集合…………………………………………2 函数…………………………………………15
§2.1 函数及其性质………………………15 §2.2 二次函数 ………………………21 §2.3 函数迭代 ………………………28 §2.4 抽象函数 ………………………32
第三章 数列…………………………………………37
§3.1 等差数列与等比数列……………………37 §3.2 递归数列通项公式的求法 ………………44 §3.3 递推法解题………………………………48
第四章 三角 平面向量 复数………………………51 第五章 直线、圆、圆锥曲线………………………60 第六章 空间向量 简单几何体………………………68 第七章 二项式定理与多项式………………………75 第八章 联赛二试选讲 ………………………82
§8.1 平几名定理、名题与竞赛题 ……82 §8.2 数学归纳法 ………………………99 §8.3 排序不等式 ………………………103
第0页
大庆市弘文高
高中数学解题思维与思想
《高中数学解题思维与思想》
导 读
数学家G . 波利亚在《怎样解题》中说过:数学教学的目的在于培养学生的思维能力,培养良好思维品质的途径,是进行有效的训练,本策略结合数学教学的实际情况,从以下四个方面进行讲解:
一、数学思维的变通性
根据题设的相关知识,提出灵活设想和解题方案 二、数学思维的反思性
提出独特见解,检查思维过程,不盲从、不轻信。 三、数学思维的严密性
考察问题严格、准确,运算和推理精确无误。 四、数学思维的开拓性
对一个问题从多方面考虑、对一个对象从多种角度观察、对一个题目运用多种不同的解法。
什么”转变,从而培养他们的思维能力。
《思维与思想》的即时性、针对性、实用性,已在教学实践中得到了全面验证。
一、高中数学解题思维策略
第一讲 数学思维的变通性
一、概念
数学问题千变万化,要想既快又准的解题,总用一套固定的方案是行不通的,必须具有思维的变通性——善于根据题设的相关知识,提出灵活的设想和解题方案。根据数学思维变通性的主要体现,本讲将着重进行以下几个方面的训练: (1)善于观察
心理学告诉我们:感觉和知觉是认识事物的最初级形式,而观察则是知觉的高级状态,是一种有目的、有计划、比较持
高中数学解题基本方法
good
高中数学解题基本方法
换元法
解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。
换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。
它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。
换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。例如解不等式:4x+2x-2≥0,先变形为设2x=t(t>0),而变为熟悉的一元二次不等式求解和指数方程的问题。
三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y=x+ x的值域时,易发现x∈[0,1],设x=sin2α ,α∈[
高中数学学习办法(高中数学学习方法)
高中数学学习办法
1、勤入手
学习数学不克不及光用脑子想一想就能够的,学数学必定要勤入手,因为有很多时候,我们没有想理解理睬,但用手去写感谢,说不定就做出来了。
2、功课很紧张
学习数学的一个紧张办法就是要完成教师安插得功课,假如只是上课听讲,那是远远不敷的,在完成教师安插功课的同事,还要多做课后习题进行巩固。
3、上课预习,下课复习
学习数学的很紧张一点即是,上课之前做好预习,这样我们才干在听课的过程当中重点听本人预习时不太懂的常识点,下课要及时复习,究竟结果上课时听得没有颠末巩固很简单健忘。
4、总结错题库
学习数学的时候,我们可以用一个簿本来记实本人所做错的标题问题,每隔3天摆布,再回头进行做一遍,有些错题,事先我们大概会做了,但过几天有大概就会再次健忘。
5、不要太在意难题
学习数学的时候,我们会碰到很多林林总总的难题,有的时候,教师也大概办理不了,这个时候,我们大可不用太在意,我们专心的把根蒂根基题弄懂做会,测验的时候大局部还是根蒂根基题的!
数学学习本领
做数学题的目的是查抄本人学的常识、办法是不是曾经把握很好了。假如把握得不准或有偏差,那么多做题反而巩固了本人的缺欠,所以要在准确掌握住根本常识和办法的根蒂
高中数学必修2训练案
第一章 空间几何体 §1.1 空间几何体的结构 第1课时 多面体的结构特征
一、基础过关
1.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱对角线的条数共有( ) A.20 B.15 C.12 D.10 2.棱台不具备的特点是( ) A.两底面相似 C.侧棱都相等 形成的几何体是( ) A.棱柱
C.棱柱与棱锥的组合体 A.1∶2 C.2∶1
B.棱台 D.不能确定 B.1∶4 D.4∶1 B.侧面都是梯形 D.侧棱延长后都交于一点
3.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水
4.若棱台上、下底面的对应边之比为1∶2,则上、下底面的面积之比是( )
5.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为________cm. 6.在下面的四个平面图形中,哪几个是侧棱都相等的四面体的展开图________.(填序号)
7.如图所示为长方体ABCD—A′B′C′D′,当用平面BCFE把这个长方体分成两部分后,各部分形成的多面体还是棱柱吗?如果不是,请说明理由;如果是,指出底面及侧棱.
二、能力提升
8.下图中不可能围成正方
高中数学竞赛训练题二
数学训练题(二)
一、选择题 2、满足y
( ) x 3 x 2007的正整数数对(x,y)
(A)只有一对 (B)恰有有两对 (C)至少有三对 (D)不存在
3、设集合M={-2,0,1},N={1,2,3,4,5},映射f:M N使对任意的x∈M,都有3是奇数,则这样的映射f的个数是( )
(A)45 (B)27 (C)15 (D)11 4、设方程
x2y2
1所表示的曲线是( ) 2007 2007
sin(19)cos(19)
(A)双曲线 (B)焦点在x轴上的椭圆
(C)焦点在y轴上的椭圆 (D)以上答案都不正确
5、将一个三位数的三个数字顺序颠倒,将所得到的数与原数相加,若和中没有一个数字是偶数,则称这个数为“奇和数”。那么,所有的三位数中,奇和数有( )个。 (A)100 (B)120 (C)160 (D)200
6、函数y f(x)与y g(x)有相同的定义域,且对定义域中的任何x,有。若g(x) 1
的解集是{x|x 0},则
高中数学解题基本方法——配方法
掌握一种解题的基本方法。
高中数学解题基本方法——配方法
配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。
最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。
配方法使用的最基本的配方依据是二项完全平方公式(a+b)=a+2ab+b,将这个公式灵活运用,可得到各种基本配方形式,如:
a+b=(a+b)-2ab=(a-b)+2ab; 2222222
b22a+ab+b=(a+b)-ab=(a-b)+3ab=(a+)+(b); 222222
a+b+c+ab+bc+ca=
22222221222[(a+b)+(b+c)+(c+a)] 22a+b+c=(a+b+c)-2(ab+bc+ca)=(a+b-c)-2(ab-bc-ca)=
结合其它数学知识和性质,相应有另外的一些配方形式,如:
1+sin2α=1+2sinαcosα=(sinα+cosα);
x+2211
高中数学解题思维策略 一数学思维的变通性
数学问题千变万化,要想既快又准的解题,总用一套固定的方案是行不通的,必须具有思维的变通性——善于根据题设的相关知识,提出灵活的设想和解题方案。根据数学思维变通性的主要体现,本讲将着重进行以下几个方面的训练
高中数学解题思维策略第一讲数学思维的变通性
一、概念
数学问题千变万化,要想既快又准的解题,总用一套固定的方案是行不通的,必须具有思维的变通性——善于根据题设的相关知识,提出灵活的设想和解题方案。根据数学思维变通性的主要体现,本讲将着重进行以下几个方面的训练:
(1)善于观察
心理学告诉我们:感觉和知觉是认识事物的最初级形式,而观察则是知觉的高级状态,是一种有目的、有计划、比较持久的知觉。观察是认识事物最基本的途径,它是了解问题、发现问题和解决问题的前提。
任何一道数学题,都包含一定的数学条件和关系。要想解决它,就必须依据题目的具体特征,对题目进行深入的、细致的、透彻的观察,然后认真思考,透过表面现象看其本质,这样才能确定解题思路,找到解题方法。 1111 例如,求和. 1 22 33 4n(n 1)
这些分数相加,通分很困难,但每项都是两相邻自然数的积的倒数,且
111111111 1 ,因此,原式等于1 问题223nn 1n 1