求不定积分的方法总结

“求不定积分的方法总结”相关的资料有哪些?“求不定积分的方法总结”相关的范文有哪些?怎么写?下面是小编为您精心整理的“求不定积分的方法总结”相关范文大全或资料大全,欢迎大家分享。

求不定积分的若干方法讲解

标签:文库时间:2024-11-18
【bwwdw.com - 博文网】

四川师范学院2011届毕业生论文

目录

中文摘要…………………………………………………………………………3 Abstract…………………………………………………………………………4 1 引言……………………………………………………………………………6 2 直接积分法…………………………………………………………………6 2.1原函数和不定积分的定义……………………………………………6 2.2直接积分法的运用方法………………………………………………6 3 换元积分法…………………………………………………………………7 3.1 第一换元积分法………………………………………………………7

3.1.1 第一换元积分法的定义与分析…………………………………………7 3.1.2 第一换元积分法的运用…………………………………………………7

3.2 第二换元积分法………………………………………………………10

3.2.1 第二换元积分法的定义和分析………………………………………10 3.2.2 第二换元积分法的运用………………………………………………10

3.3 换元积分法中值得注意的问题……………………………………1

求不定积分的方法及技巧小汇总~

标签:文库时间:2024-11-18
【bwwdw.com - 博文网】

求不定积分的方法及技巧小汇总~

1.利用基本公式。(这就不多说了~) 2.第一类换元法。(凑微分)

设f(μ)具有原函数F(μ)。则

?f[?(x)]??'(x)dx??f[?(x)]d?(x)?F[?(x)]?C

其中?(x)可微。

用凑微分法求解不定积分时,首先要认真观察被积函数,寻找导数项内容,同时为下一步积分做准备。当实在看不清楚被积函数特点时,不妨从被积函数中拿出部分算式求导、尝试,或许从中可以得到某种启迪。如例1、例2: 例1:?ln(x?1)?lnxdx

x(x?1)111 ???x?1xx(x?1)【解】(ln(x?1)?lnx)'?ln(x?1)?lnx12dx??(ln(x?1)?lnx)d(ln(x?1)?lnx)??(ln(x?1)?lnx)?C?x(x?1)?2例2:?1?lnxdx

(xlnx)2【解】(xlnx)'?1?lnx

1?lnxdxlnx1dx????x(x?1)2?(xlnx)2xlnx?C

3.第二类换元法:

设x??(t)是单调、可导的函数,并且?'(t)?0.又设f[?(t)]?'(t)具有原函数,则有换元公式

?f(x)dx??f[?(t)]?'(t)dt

第二类换元法主要是针对多种形式的无理

不定积分表

标签:文库时间:2024-11-18
【bwwdw.com - 博文网】

Yz.Liu.2013.09

卷终 公式表注解四

基本不定积分表

序言:

微积分创立之初,牛顿与莱布尼茨分享荣誉。虽其间发生很多在优先权上的争论,但最终依然走向了发展之正轨。在微积分公式体系上,莱布尼茨对之要求甚严,并总结其基本微分表和基本积分表。如今随微积分之发展,公式表逐渐全面,分类亦几乎

覆盖各种不定积分。积分表的编订对于积分运算可以说是必要,亦是数学发展之必要结果。

本表给出常用不定积分的计算公式和运算方法,以及每个积分的简要推演方法,其中引入了除一般之换元法,凑微分法,分部积分法之外,亦引入虚数单位,并使用虚数单位推演某些复杂的不定积分运算。而对于简单的不定积分运算和基本的微分公式

之反用,或均不在此给出推演方法,或仅以推演步骤简要之说明。

本表收录公式16组,151式。

公式一 基本初等函数的不定积分18式:

?1??1x?C,???1;?(1).?xdx????1??ln|x|?C,???1.幂函数

?(2).?axdx?1xa?Clna指数函数

(3).?exdx?ex?C

(4).?logaxdx?xlogax?xlogae?C对数函数三角函数

(5).?lnxdx?xlnx?x?C(6).?sinxdx??cosx?C(7).?

不定积分的典型例题

标签:文库时间:2024-11-18
【bwwdw.com - 博文网】

不定积分的典型例题

不定积分的典型例题

x2 1

例1.計算 4

x 1

解法1

x4 1 (x2

2x 1)(x2 2x 1).

而 (x2 2x 1) (x2 2x 1) 2(x2 1) 所以

x2 1111

( x4 12 x2 2x 1 x2 2x 1) 1 [ 2

1

221(x )

22

1d(2x 1)

1

221

(x )

22

1d2x 1)

)

2(

2

2x 1) 1

2

2(

2x 1) 1

2

1

2x 1) 2x 1)] c.

x2 1(x2 2x 1) 2x

22

解法2 x4 1(x 2x 1)(x 2x 1)

dx2x

4 2

x 1x 2x 1

11 2x 1) arctanx2 c.

22 解法3

11

1d(x )2x 1当x 0, 4dx x 1x2 2x2 2xx

2

1

d(x )

1x2 1 c

1222x(x ) 2x lim

x 0

12

x2 1x

22

,

不定积分的典型例题

1x2 1 lim , x 0

22x22由拼接法可有

2

x 1

dx x4 1

1x2 1 22x22

1x2 1 22x22

c,x 0

x 0. c

x 0

x3 2

例2.求 . 22

(x 1)(x 1)解 将被积函数化为简单的部分分式

x3 2ABCx D

高数不定积分解题方法

标签:文库时间:2024-11-18
【bwwdw.com - 博文网】

高数不定积分:巧辩题型,不仅仅是刷题

高等数学又被称为“微积分”,顾名思义,高等数学主要是研究微分与积分这一对儿矛盾的,既然是一对儿矛盾,那么从概念到计算法则想必都是一一对应的,是不是这样呢?下面,凯程考研数学组老师就从“矛盾”这一角度重新来看看不定积分的基本计算方法,希望帮助大家更深刻地去理解不定积分及其计算。

首先,回顾一下函数的求导法则:

从这种对应的角度重新去看不定积分与求导法则之间的关系,是不是更有利于理解不定积分的积分法呢?这是从整体框架上帮大家认识积分法则,当然具体到题目就需要同学们练就一双火眼金睛,能快速分析出题目所属类型,相应作出正确的处理,那么就需要我们再从“微观”的角度,细致的去分析如何从被积函数分析出使用哪种方法合适,每种方法在考查的时候又有有何技巧呢?以下内容将和大家一起探讨。

第 1 页 共 1 页

此外,换元积分分为第一类换元积分与第二类换元积分,从本质上讲是换元积分公式的正向运用与反向运用。就识别来说,第一类换元积分被积函数包含原函数与导函数,第二类换元积分则主要解决被积函数中含有根式的情况,如果含有一次根式,则使用代数换元,将整个根式替换掉,如果含有二次根式则需要使用三角换元。不管是代数换元还是三角换元

不定积分培优讲义

标签:文库时间:2024-11-18
【bwwdw.com - 博文网】

不定积分

内容要点

1.(影子法 LIATE) 2.基本的2个? 一、基本概念与性质

1.原函数与不定积分的概念

2.不定积分的性质

设 ?f?x?dx?F?x??C,其中F?x?为f?x?的一个原函数,C为任意常数。则 (1)

?F??x?dx?F?x??C

?? 或?dF?x??F?x??C

???(2) ??f?x?dx??f?x? 或d??f?x?dx??f?x?dx

(3) (4) ?kf?x?dx?k?f?x?dx ?f?x??g?x???dx??f?x?dx??g?x?dx ??3.原函数的存在性 1)设f?x?在区间I上连续,则f?x?在区间I上原函数一定存在 2)初等函数的原函数不一定是初等函数

?sin?x2?dx,?cos?xxa?12?dx,?sinxxdx,?cosxxdx,?dxlnx,?e?xdx

2二、基本积分公式 1.?xdx?1aa?1?C (a??1,实常数)

2.?dx?lnx?C

x3.?adx?x1lnaxa?C (a?0,a?1)

x?exdx?e?C

4.?cosxdx?sinx?C 5.?sinxdx??cosx?C

6.?secxdx?7.?cscxdx?22?co

不定积分基本公式

标签:文库时间:2024-11-18
【bwwdw.com - 博文网】

不定积分基本公式

第二节 不定积分的基本公式和直接积分法(Basic Formula of Undefined

Integral and Direct Integral)

课 题:1. 不定积分的基本公式 2. 不定积分的直接积分法 课堂类型:讲授 教学目的:熟练掌握不定积分的基本公式,对简单的函数能用直接积分法进行积分。 教学重点:不定积分的基本公式 教学难点: 直接积分法 教 具:多媒体课件 教学方法: 教学内容:

一、不定积分的基本公式

由于不定积分是求导的逆运算,所以由导数的基本公式对应地可以得到不定积分的基本公式。 导数的基本公式 不定积分的基本公式

(C) 0x 1

(x 1)

1 x (ex) ex(ax) axlna1x

(sinx) cosx(cosx) sinx(lnx) (tanx) sec2x(cotx) csc2x(secx) secxtanx(cscx) cscxcotx(arcsinx)

1

(arctanx)

1 x2

(arccosx) 1

(arccotx)

1 x21

(logax)

xlna

0dx C dx x C

x 1

xdx 1

不定积分例题及答案

标签:文库时间:2024-11-18
【bwwdw.com - 博文网】

第4章 不定积分

内容概要 名称 不 定 积 分 不 定 积 分 的 概 念 主要内容 设f(x), x?I,若存在函数F(x),使得对任意x?I均有 F?(x)?f(x) 或dF(x)?f(x)dx,则称F(x)为f(x)的一个原函数。 f(x)的全部原函数称为f(x)在区间I上的不定积分,记为 ?f(x)dx?F(x)?C 注:(1)若f(x)连续,则必可积;(2)若F(x),G(x)均为f(x)的原函数,则F(x)?G(x)?C。故不定积分的表达式不唯一。 性 质 性质1:d?f(x)dx??f(x)或d??f(x)dx??f(x)dx; ?????dx性质2:F?(x)dx?F(x)?C或dF(x)?F(x)?C; 性质3:[?f(x)??g(x)]dx??计 算 方 法 第一换元 积分法 (凑微分法) 第二类 换元积 分法 ??? ?f(x)dx???g(x)dx,?,?为非零常数。设f(u)的 原函数为F(u),u??(x)可导,则有换元公式: ?f(?(x))??(x)dx??f(?(x))d?(x)?F(?(x))?C 设x??(t)单调、可导且导数不为零,f[?(t)]??(t)有原

不定积分练习与答案

标签:文库时间:2024-11-18
【bwwdw.com - 博文网】

(1)

?xdx2x (2)

3(?x?1x)dx

(3)

(2?x?x2)dx

(4)

?3x4?3x2?1x2x(x?3)dx (5)?dx (6)?dx (7)(?x2-1x+34x3-x4)dx (10)?1x2(1?x2)dx (13)?cot2xdx (16)

?11?cos2xdx (19)?(1?x1?x?1?x1?x)dx(1)

?e3tdt (4)

?135?3xdx (7)

?tan10xsec2xdx (10)

?dxsinxcosx (13)

?xdx 2?3x2(16)?sinxcos3xdx (19) ?dx2x2?1 (22)

?xdxx8?1 x2?1(8)?(31?x2?2)dx

不定积分毕业论文

标签:文库时间:2024-11-18
【bwwdw.com - 博文网】

本科生毕业论文设计

不定积分的计算方法及拓展

作者姓名: 指导教师:

所在学院: 数学与信息科学学院 专业(系): 数学与应用数学 班级(届): 201X届数学X班

二〇一五年 四月二十四日

1

目 录

中文摘要、关键字 ???????????????????????? 1 1 不定积分的计算方法

???????????????????? 2

1.1 分部积分法 ???????????????????????? 2 1.1.1 分部积分法得基本认识 ????????????????? 2 1.1.2 函数u、v的优选判别 ????????????????? 3 1.2 第一换元积分法

???????????????????? 4

1.2.1 第一换元积分法概念 ????????????????? 4 1.2.2 常用凑微分公式 1.3 第二换元积分法

?????????????????? 4

???????????????????? 5

1.3.1 第二换元积分法概念 ????????????????? 5 1.3.2 第二换元法的常用代换 ???????????????? 2 几种特殊类型函数的积分

5

?????