近似计算在数学分析中的应用研究背景
“近似计算在数学分析中的应用研究背景”相关的资料有哪些?“近似计算在数学分析中的应用研究背景”相关的范文有哪些?怎么写?下面是小编为您精心整理的“近似计算在数学分析中的应用研究背景”相关范文大全或资料大全,欢迎大家分享。
近似计算在数学分析中的应用毕业论文
安庆师范学院数学与计算科学学院2015届毕业论文
近似计算在数学分析中的应用
作者:石结军 指导老师:张玮玮
摘要 近似计算是一个比较特殊的解决问题的方法,它是解决数学中复杂繁琐问题的重要工具,
是获得结果且影响极小的有力工具.在数学分析中,这种方法的运用尤为突出,如在定积分中的应用、微分中的应用、函数幂级数的应用等,其中函数幂级数中的应用主要体现在泰勒展开式中的应用.本文主要研究在数学分析中用具体实例来说明对这种方法的运用.
关键词 近似计算 数学分析 微分 函数幂级数 定积分
1 引言
近似计算是一种对计算结果影响不大,但能大大简化计算的过程,被广泛用于各个领域.在数学分析中,本文从在微分中、在定积分中、在求方程的解以及函数幂级数中的应用出发,然后分别简单介绍这几方面的一些有关内容及有关概念,并且针对近似计算在这些方面的应用列举出实例来加以解释说明这种方法的实用性,并且说明其与精确结果之间产生的误差.
2 近似计算在数学分析中的应用 1.1 在微分中的应用
在科学和工程问题中遇到的数值问题往往很复杂,在许多情况下都不可能求出数值解的精确值,另一方面,在许多实际问题中,并不需要解的精确值,而仅仅需要获得解在若干点上
利息计算在数学中的应用
毕业论文(设计)
论文题目:
浅谈金融数学中的利息计算
学生姓名: 学 号: 所在院系: 专业名称: 届 次: 指导教师:
叶津 1005010241 数学与计算科学系 数学与应用数学
2014届 向 伟
淮南师范学院本科毕业论文(设计)
诚信承诺书
1.本人郑重承诺:所呈交的毕业论文(设计),题目《
》是本人在指导教师指导下独
立完成的,没有弄虚作假,没有抄袭、剽窃别人的内容;
2.毕业论文(设计)所使用的相关资料、数据、观点等均真实可靠,文中所有引用的他人观点、材料、数据、图表均已注释说明来源;
3. 毕业论文(设计)中无抄袭、剽窃或不正当引用他人学术观点、思想和学术成果,伪造、篡改数据的情况;
4.本人已被告知并清楚:学院对毕业论文(设计)中的抄袭、剽窃、弄虚作假等违反学术规范的行为将严肃处理,并可能导致毕业论文(设计)成绩不合格,无法正常毕业、取消学士学位资格或注销并追回已发放的毕业证书、学士学位证书等严重后果;
5.若在省教育厅、学院组织的毕业论文(设计)检查、评比中,被发现有抄袭、剽窃、弄虚作假等违反学术规范的行为,本人愿意接受学院按有关规定给予的处理,并承担相应责任。
学生(签名):
日期: 年
毕业论文 - 反例在数学分析中的应用
包头师范学院 本 科 毕 业 论 文
题 目: 反例在数学分析中的应用 学生姓名: 学 号: 专 业: 数学与应用数学 班 级: 指导教师: 常秋胜
二 〇一 年 月
反例在数学分析中的应用
摘要:
数学分析是一门很重要的基础课程,对学生数学思想的形成,后继课程的学习都有着重要的意义。而在数学分析中存在很多定理命题,运用恰当的反例从另一个侧面抓住概念或规则的本质,进而更容易加深对知识的理解。反例思想是数学分析中的重要思想,在概念、性质的理解,问题的研究与论证中都具有不可替代的独特作用。恰当地运用反例,对于正确理解概念、巩固和掌握定理、公式、法则等,培养学生的逻辑思维能力,预防和纠正错误,将起着十分重要的作用。
关键词: 数学分析 反例 数列 极限 微积分
Abstract:
Mathematical analysis i
反例在数学分析中的应用毕业论文
本 科 毕 业 论 文
题 目: 反例在数学分析中的应用 学生姓名: 学 号: 专 业: 数学与应用数学 班 级: 指导教师:
二 〇一 年 月
反例在数学分析中的应用
摘要:
数学分析是一门很重要的基础课程,对学生数学思想的形成,后继课程的学习都有着重要的意义。而在数学分析中存在很多定理命题,运用恰当的反例从另一个侧面抓住概念或规则的本质,进而更容易加深对知识的理解。反例思想是数学分析中的重要思想,在概念、性质的理解,问题的研究与论证中都具有不可替代的独特作用。恰当地运用反例,对于正确理解概念、巩固和掌握定理、公式、法则等,培养学生的逻辑思维能力,预防和纠正错误,将起着十分重要的作用。
关键词: 数学分析 反例 数列 极限 微积分
Abstract:
Mathematical analysis is an impo
反例在数学分析学习中的优秀论文
优秀论文
题 目: 反例在数学分析学习中的应用 姓 名: 吴永达
学 院: 理学院 专 业: 数学与应用数学
2011年5月4日
云南师范大学数学学院教务处制 班 级: 2009级 1班 学 号: 1884070133 指导教师: 李连丽 职称: 讲 师
安徽科技学院学士学位论文
摘 要
本文通过数学分析中的很多定理命题,运用恰当的反例从另一个侧面抓住概念或规则的本质,进而更容易加深对知识的理解.反例思想是数学分析中的重要思想,在概念、性质的理解,问题的研究与论证中都具有不可替代的独特作用.恰当地运用反例,对于正确理解概念、巩固和掌握定理、公式、法则等,培养学生的逻辑思维能力,预防和纠正错误,将起着十分重要的作用.本文针对这个问题,深入细致研究了数学分析中的很多问题的反例.系统的对数学分析中的反例进行总结研究,共分为数列、函数、一元函数导数及其积分、级数、多元函数
数学分析中的化归法
数学分析中的化归法
目 录
摘要 ................................................................................ 1 Abstract ............................................................................. 1 1. 绪论 ............................................................................. 2 1.1 化归法的背景 ................................................................. 2 2. 详谈化归法 ....................................................................... 3 2.1 化归法的分类 ................................................................. 3 2.2 常见的化归
实验二:定积分的近似计算
数学实验的课件
数学实验
实验二 定积分的近似计算
数学实验的课件
实验二、 实验二、定积分的近似计算问题背景和实验目的定积分计算的基本公式是牛顿-莱布尼兹公式。但当 被积函数的原函数不知道时,如何计算?这时就需要利 用近似计算。特别是在许多实际应用中,被积函数甚至 没有解析表达式,而是一条实验记录曲线,或一组离散 的采样值,此时只能用近似方法计算定积分。 本实验主要研究定积分的三种近似计算算法:矩形法、 梯形法和抛物线法。同时介绍 Matlab 计算定积分的相关 函数。
数学实验的课件
实验二、 实验二、定积分的近似计算矩形法定积分的定义:
∫
b
a
f ( x )dx = nlim →∞ x1 x2LL
x →0 i =1
∑ f (ξ ) x ,i i
n
ξi ∈ [ xi 1 , xi ]
xi xi
LL LLi
xn xn 1 = xn
x0 =
x1
x2
L L xi 1
xi = xi xi 1 ,
x = max xi
数学实验的课件
矩形法 矩形法定积分的近似:
∫
b
a
f ( x )dx ≈ ∑ f ( ξi ) xi , n 充分大,△x 充分小i =1
n
通常我们取 x1 = x2 = L = xn
h = b a n
点 ξi ∈ [
实验二:定积分的近似计算
数学实验的课件
数学实验
实验二 定积分的近似计算
数学实验的课件
实验二、 实验二、定积分的近似计算问题背景和实验目的定积分计算的基本公式是牛顿-莱布尼兹公式。但当 被积函数的原函数不知道时,如何计算?这时就需要利 用近似计算。特别是在许多实际应用中,被积函数甚至 没有解析表达式,而是一条实验记录曲线,或一组离散 的采样值,此时只能用近似方法计算定积分。 本实验主要研究定积分的三种近似计算算法:矩形法、 梯形法和抛物线法。同时介绍 Matlab 计算定积分的相关 函数。
数学实验的课件
实验二、 实验二、定积分的近似计算矩形法定积分的定义:
∫
b
a
f ( x )dx = nlim →∞ x1 x2LL
x →0 i =1
∑ f (ξ ) x ,i i
n
ξi ∈ [ xi 1 , xi ]
xi xi
LL LLi
xn xn 1 = xn
x0 =
x1
x2
L L xi 1
xi = xi xi 1 ,
x = max xi
数学实验的课件
矩形法 矩形法定积分的近似:
∫
b
a
f ( x )dx ≈ ∑ f ( ξi ) xi , n 充分大,△x 充分小i =1
n
通常我们取 x1 = x2 = L = xn
h = b a n
点 ξi ∈ [
圆周率π的近似计算方法
圆周率π的近似计算方法
班级 学号 姓名
众所周知,圆周率π是平面上圆的周长与直径之比,它等于3.141 592 6…。古代人把3作为它的近似值。π是一个非常重要的常数.一位德国数学家评论道:\历史上一个
国家所算得的圆周率的准确程度,可以做为衡量这个这家当时数学发展水平的重要标志.\古
今中外很多数学家都孜孜不倦地寻求过π值的计算方法.
古人计算圆周率,一般是用割圆法(不断地利用勾股定理,来计算正N边形的边长)。即用圆的内接或外切正多边形来逼近圆的周长。公元263年,刘徽通过提出著名的割圆术,得出 π =3.14,通常称为\徽率\,他指出这是不足近似值。割圆术用内接正多边形就确定出了圆周率的上、下界,他将割到192边形的几个粗糙的近似值通过简单的加权平均,竟然获得具有4位有效数字的圆周率 π =3927/1250 =3.1416。而这一结果,正如刘徽本人指出的,如果通过割圆计算得出这个结果,需要割到3072边形。后来祖冲之通过割圆法求得圆周率3.1415926 < π < 3.1415927 ,得到 π 的两个近似分数即:约率为22/7;密率为355/113。他算出的 π 的8位可靠数字,不但在当时是最精
数学分析2
▇ ▇ 数学分析
《数学分析Ⅰ》第2讲 教学内容:实数系的连续性
第二章 数列极限
§2.1实数系的连续性
一. 实数系的产生(历史沿革)
从人类历史的开始,人类就逐步认识了自然数,1,2,3,?,n,?
自然数集 整数集 有理数集 实数集
解决的减法解决对除法?????????? ? 的封闭性的封闭性解决对开方?????的封闭性? ? ?
对加法封闭 对加减乘封闭 对加减乘除封闭 对减法不封闭 对除法不封闭 对开方不封闭
2000多年前,毕达哥拉斯学派认为:有理数集是最完美的数集;世界上的万事万物都可以用有理数表示。
但是,毕达哥拉斯的一个“叛逆”的学生,发现了边界为1的正方形的对角线长度不是一个有理数,即
数轴上点c不是一个有理数点。
例2.1.1设c?2,试证明:c不是一个有理数。
2p,则q222p2?c2q2?2q2,所以2|p,不妨设p?2p1,故(2p1)?2q,所以2p1?q, 所以2|q,记q?2q1,即p?2p1,q?2q1,这与 (p,q)