第11章三角形思维导图
“第11章三角形思维导图”相关的资料有哪些?“第11章三角形思维导图”相关的范文有哪些?怎么写?下面是小编为您精心整理的“第11章三角形思维导图”相关范文大全或资料大全,欢迎大家分享。
第11章全等三角形复习
张庄中学“自主—互助,当堂巩固”八年级数学课案 班 第 小组 姓名 课题 第11章全等三角形复习 课型 复习课 执笔 毋利玲 复习目标:1.知道什么是全等形、全等三角形;
2.能熟练找出全等三角形的对应元素,能用符号正确地
表示两个三角形全等; 3.掌握全等三角形的性质.
复习重点:全等三角形的概念、性质。 复习难点:对应边和对应角的确定。 复习指导
一、知识点复习:
1、全等三角形的概念:
能完全重合的两个三角形叫做全等三角形。 2、全等三角形的特征:
全等三角形的对应边相等,对应角相等。 3、全等三角形的识别:
(1)一般三角形全等的识别:SSS,SAS,ASA,AAS (2)直角三角形全等的识别:除以上方法外,还有HL 注意:1、“分别对应相等”是关键
2、两边及其中一边的对角分别对应相等的两个三角形不一定全等 二、全等三角形识别思路复习
如图,已知△ABC和△DCB中,AB=DC,请补充一A D 个条件 ,使△ABC≌ △DCB。
三角形和四边形思维导图
三角形和四边形思维导图
三角形内角和等于 180°
三角形任意两边之和 大于第三边
等边三角形
等腰三角形
锐角三角形
边 不等边三角形
三角形
角
钝角三角形 直角三角形
认识三角形和 四边形
四边形 只有一组对边平行 的四边形 没有一组对边平行 的四边形 有两组对边分别平 行的四边形
梯形 平行四边形 长方形 正方形
直角梯形
等腰梯形
第11章--三角形期末复习学案
第11章三角形期末复习学案、考题训练与作业
一、三角形三边的关系:两边之和大于第三边,两边只差小于第三边
1:三边关系的依据是:两点之间线段是短
2:判断三条线段能否构成三角形的方法:只要满足较小的两条线段之和大于第三条线段,
便可构成三角形;若不满足,则不能构成三角形
3:三角形第三边的取值范围是:两边之差 < 第三边 < 两边之和
例题1 :已知三角形的两边是 5cm与7cm,第三边是x cm,则x的取值范围是
_____________________________________________________________________________________ ;
该三角形的周长为lcm,则I的取值范围是____________________ ;
例题2 :已知等腰三角形的两边分别是 3 cm与7cm,求该等腰三角形的周长;
考题训练:
1、下列三条线段首位顺次相接,能组成三角形的是()
1 1
A、1 cm、2cm、3cm
B、6cm、10cm、3cm
C、3cm、4cm、5cm
D、- cm-cm 1cm
3 ,2 ,
2、已知三角形的两边是 4cm、6cm,则第三边可以是()
A、1cm ;
B、3cm ;
C、10cm ;
D、12cm
3、已知三角形的两边是 6、9,则第
2014年最全初中数学导学案 - 第11章 全等三角形 导学案
第十一章:全等三角形导学案
11.1《全等三角形》导学案
【使用说明与学法指导】
1. 课前完成预习案,牢记基础知识,掌握基本题型,时间不超过15分钟。 2 .组内探究、合作学习完成《课内探究》不超过20分钟。
3.小组长在课上合作探究环节要在组内起引领示范作用,控制讨论节奏。 4.人人参与,合作学习,人人都有收获,人人都有进步。 5.带﹡的题要多动脑筋,展示你的能力。
一、学习目标:
1.理解全等三角形的概念,能识别全等三角形的对应顶点、对应边、对应角。 2.掌握全等三角形的性质,并运用性质解决有关的问题。
3.会用符号表示全等三角形及他们的对应元素,培养大家的符号意识。
二、重点难点:运用全等三角形的性质解决相关的计算及证明等问题。 三、学习过程
《课前预习案》
(一)、自主预习课本2—3页内容,回答下列问题:
1、能够______________的图形就是全等图形, 两个全等图形的_________和________完全相同。
2、一个图形经过______、______、_________后所得的图形与原图形 。
3、把两个全等的三角形重合在一起,重合的顶点叫做 ,重合的边叫做
三角形、等腰三角形以及全等三角形的证明
儒洋教育学科教师辅导讲义
学员姓名: 年 级: 课时数: 辅导科目: 学科教师: 课 题 授课时间: 教学目标 重点、难点 考点及考试要求 教学内容 1. 三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。 2. 三角形中的几条重要线段:
(1)三角形的角平分线(三条角平分线的交点叫做内心) (2)三角形的中线(三条中线的交点叫重心) (3)三角形的高(三条高线的交点叫垂心) 3. 三角形的主要性质
(1)三角形的任何两边之和大于第三边,任何两边之差小于第三边; (2)三角形的内角之和等于180°
(3)三角形的外角大于任何一个和它不相邻的内角,等于和它不相邻的两个内角的和; (4)三角形中,等角对等边,等边对等角,大角对大边,大边对大角; (5)三角形具有稳定性。
4. 补充性质:在?ABC中,D是BC边上任意一点,E是AD上任意一点,则三角形、等腰三角形以及全等三角形的证明 备课时间: S?ABE?S?CDE?S
第1章 解三角形教案
第一章 解三角形
章节总体设计
(一)课标要求
本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上。通过本章学习,学生应当达到以下学习目标:
(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。
(2)能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的生活实际问题。
(二)编写意图与特色
1.数学思想方法的重要性
数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。 本章重视与内容密切相关的数学思想方法的教学,并且在提出问题、思考解决问题的策略等方面对学生进行具体示范、引导。本章的两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形的边角关系的结论。在初中,学生已经学习了相关边角关系的定性的知识,就是“在任意三角形中有大边对大角,小边对小角”,“如果已知两个三角形的两条对应边及其所夹的角相等,那么这两个三角形全”等。
教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题:“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时
第1章 解三角形教案
第一章 解三角形
章节总体设计
(一)课标要求
本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上。通过本章学习,学生应当达到以下学习目标:
(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。
(2)能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的生活实际问题。
(二)编写意图与特色
1.数学思想方法的重要性
数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。 本章重视与内容密切相关的数学思想方法的教学,并且在提出问题、思考解决问题的策略等方面对学生进行具体示范、引导。本章的两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形的边角关系的结论。在初中,学生已经学习了相关边角关系的定性的知识,就是“在任意三角形中有大边对大角,小边对小角”,“如果已知两个三角形的两条对应边及其所夹的角相等,那么这两个三角形全”等。
教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题:“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时
相似三角形导学案
3.1.1 比例的基本性质
【学习目标】:
1. 理解比例的基本性质,并会进行简单变形.
3. 通过现实情境,培养应用意识,了解数学、自然、社会的密切联系. 【体验学习】:
一、新知探究
请认真阅读教材第62-63页的内容,回答下列问题 1. 比例的基本性质是什么?
2.通过研究教材62-63页,试探究:如何由
二、基础演练
根据以上的探究,自主解决下列问题,并与小组成员交流分享你的学习成果: 1.若b,c,d,a成比例,则这个比例式为( ) A.
acaba?bc?d?,得到?和=? bdcdbdacbdabba? B.? C.? D.? bdcacddcxmnyx2. 若?,则? ,? ,? . ynyxm3. 当比例式为2:x?5:9,则x?__________. 4. 已知四个数a,b,c,d成比例, 若a??3,b?9,c?4,求d; 若a??3,b?3,c?5,求d.
学法指导:成比例是有顺序的哦! a?bb?ab3? ,? . ? ,则aaa2a?b8a?b2ab?,则?
初中数学三角形(二)特殊三角形
三角形(二)——特殊三角形
【等腰三角形】
1.有两条边相等的三角形是等腰三角形,等腰三角形是轴对称图形。 2.等腰三角形的两个底角相等(简写成“等边对等角”)。
3.等腰三角形顶角的平分线平分底边并且垂直于底边。(常称为“三线合一”)。 4.如果一个三角形有两个内角相等,则它是等腰三角形。
姓 名: 【典型例题】
例1.已知?ABC中,那么?ABC一定是( ) ?B与?C的平分线的交点P恰好在BC边的高AD上, (A)直角三角形 (B)等边三角形 (C)等腰三角形 (D)等腰直角三角形
第12届(2001年)初二培训
例2.如图2,在?ABC中,AB=AC,∠A=36°,BD,CE分别平分∠ABC和∠ACB,它们相交于F点,是图中等腰三角形的个数是( )
第14届(2003年)初二培训
图2
例3.等腰三角形的一条腰上的高等于该三角形某一条边的长度的一半,则其顶角等于( )。
图1
(A)30° (B)30°或150° (C)120°或150° (D)30°或120°或150°
第10届(1999年)初二第
40《三角形面积》导学案
宝 鸡 高 新 第 一 小 学
数 学 课 导 学 案
年级 五年级 科 目 共2课时,第1课时 预设上课时间 学习目标 重点 难点 数学 课题 上课教师 三角形的面积 备课时间 主备教师 王亚兰 8月26 日 本期总计第 课时 月 日(星期 ) 1.在自主探索中经历推导三角形面积计算公式的过程。 2.能运用公式直接计算三角形的面积,解决生活中的简单问题。 在自主探索中经历推导三角形面积计算公式的过程。 能运用面积计算公式计算相关图形的面积并解决一些实际问题。 教学时间 环节 自 主 探 究 一、激趣导入 用学生的红领巾引出三角形面积,让学生看课题提出自己想知道的问题,激发学习情趣。 二、探究新知: (一)学生自学活动单问题导读部分,完1.自学课本56页后,动手剪两个完全相同的三角形,并把它们拼成一个平行四边形,观察拼成的平行四边形,回答下面的问题: 平行四边形的底是原三角形的 平行四边形的高是原三角形的 平行四边形的面积是 因为平行四边形的面积 = 底 × 高,所以三角形的面积= 如果用S表示三角形