高中数学导数压轴题题型归纳
“高中数学导数压轴题题型归纳”相关的资料有哪些?“高中数学导数压轴题题型归纳”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高中数学导数压轴题题型归纳”相关范文大全或资料大全,欢迎大家分享。
高三导数压轴题题型归纳()
导数压轴题题型
1. 高考命题回顾
x
例1已知函数f(x)=e-ln(x+m).(2013全国新课标Ⅱ卷)
(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0.
11xx0
(1)解 f(x)=e-ln(x+m)?f′(x)=e-?f′(0)=e-=0?m=1,
x+m0+mx1ex+-1
定义域为{x|x>-1},f′(x)=ex-=,
x+mx+1
显然f(x)在(-1,0]上单调递减,在[0,+∞)上单调递增.
1xx(2)证明 g(x)=e-ln(x+2),则g′(x)=e-(x>-2).
x+2
11xxh(x)=g′(x)=e-(x>-2)?h′(x)=e+>0,
x+2x+2
所以h(x)是增函数,h(x)=0至多只有一个实数根,
1111
又g′(-)=-<0,g′(0)=1->0,
22e3
2
?1?
所以h(x)=g′(x)=0的唯一实根在区间?-,0?内,
?2?
?1?1t设g′(x)=0的根为t,则有g′(t)=e-=0?- t+2?2? 1 所以,et=?t+2=e-t, t+2 当x∈(-2,t)时,g′(x) 1+t2t所以g(x)min=g(t)=e-ln(t+2)=+t=>
高三导数压轴题题型归纳
导数压轴题题型
1. 高考命题回顾
例1已知函数f(x)=ex-ln(x+m).(2013全国新课标Ⅱ卷)
(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0.
11
(1)解 f(x)=ex-ln(x+m)?f′(x)=ex-?f′(0)=e0-=0?m=1,
x+m0+m
ex?x+1?-11x
定义域为{x|x>-1},f′(x)=e-=,
x+mx+1
显然f(x)在(-1,0]上单调递减,在[0,+∞)上单调递增.
1
(2)证明 g(x)=ex-ln(x+2),则g′(x)=ex-(x>-2).
x+2
11
h(x)=g′(x)=ex-(x>-2)?h′(x)=ex+>0,
x+2?x+2?2所以h(x)是增函数,h(x)=0至多只有一个实数根,
1111
又g′(-)=-<0,g′(0)=1->0,
22e3
2
1
-,0?内, 所以h(x)=g′(x)=0的唯一实根在区间??2?
11
- 1- 所以,et=?t+2=et, t+2 当x∈(-2,t)时,g′(x) ?1+t?21t 所以g(x)min=g(t)=e-ln(t+2)=+t=>0, t+2t+2 当m≤2时,有ln(x+m)≤ln(x
高三导数压轴题题型归纳()
导数压轴题题型
1. 高考命题回顾
x
例1已知函数f(x)=e-ln(x+m).(2013全国新课标Ⅱ卷)
(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0.
11xx0
(1)解 f(x)=e-ln(x+m)?f′(x)=e-?f′(0)=e-=0?m=1,
x+m0+mx1ex+-1
定义域为{x|x>-1},f′(x)=ex-=,
x+mx+1
显然f(x)在(-1,0]上单调递减,在[0,+∞)上单调递增.
1xx(2)证明 g(x)=e-ln(x+2),则g′(x)=e-(x>-2).
x+2
11xxh(x)=g′(x)=e-(x>-2)?h′(x)=e+>0,
x+2x+2
所以h(x)是增函数,h(x)=0至多只有一个实数根,
1111
又g′(-)=-<0,g′(0)=1->0,
22e3
2
?1?
所以h(x)=g′(x)=0的唯一实根在区间?-,0?内,
?2?
?1?1t设g′(x)=0的根为t,则有g′(t)=e-=0?- t+2?2? 1 所以,et=?t+2=e-t, t+2 当x∈(-2,t)时,g′(x) 1+t2t所以g(x)min=g(t)=e-ln(t+2)=+t=>
高三导数压轴题题型归纳2
第一章 导数及其应用
一, 导数的概念
lim1..已知f(x)?,则?x?0
f(2??x)?f(2)的值是( )
?x11A. ? B. 2 C. D. -2
44h?01x变式1:设f??3??4,则lim
A.-1
f?3?h??f?3?为( )
2hB.-2 C.-3
f?x0??x??f?x0?3?x?变式2:设f?x?在x0可导,则lim等于 ?x?0?x A.2f??x0?
B.f??x0?
C.3f??x0?
D.1
D.4f??x0?
( )
导数各种题型方法总结
请同学们高度重视:
首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法
5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在
其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。
最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立;
1、此类
高中数学压轴题系列 - 导数专题 - 双变量问题(2)
高中数学压轴题系列——导数专题——双变量问题(2)
1.(2010?辽宁)已知函数f(x)=(a+1)lnx+ax2+1 (1)讨论函数f(x)的单调性;
(2)设a<﹣1.如果对任意x1,x2∈(0,+∞),|f(x1)﹣f(x2)|≥4|x1﹣x2|,求a的取值范围. 解:(Ⅰ)f(x)的定义域为(0,+∞).
.
当a≥0时,f′(x)>0,故f(x)在(0,+∞)单调递增; 当a≤﹣1时,f′(x)<0,故f(x)在(0,+∞)单调递减; 当﹣1<a<0时,令f′(x)=0,解得.
则当时,f'(x)>0;
时,f'(x)<0. 故f(x)在
单调递增,在
单调递减.
(Ⅱ)不妨假设x1≥x2,而a<﹣1,由(Ⅰ)知在(0,+∞)单调递减, 从而?x1,x2∈(0,+∞),|f(x1)﹣f(x2)|≥4|x1﹣x2| 等价于?x1,x2∈(0,+∞),f(x2)+4x2≥f(x1)+4x1① 令g(x)=f(x)+4x,则
①等价于g(x)在(0,+∞)单调递减,即.
从而
故a的取值范围为(﹣∞,﹣2].(12分)
2.(2018?呼和浩特一模)已知函数f(x)=lnx,g(x)=
﹣bx(b为常数).
(Ⅰ)当b=4时,讨论函数h(x)=f
高中数学函数压轴题(精制)
高考数学函数压轴题:
1. 已知函数f(x)?134x?ax?b(a,b?R)在x?2处取得的极小值是?. 33(1)求f(x)的单调递增区间;
(2)若x?[?4,3]时,有f(x)?m?m?210恒成立,求实数m的取值范围. 3
2
2. 某造船公司年最高造船量是20艘. 已知造船x艘的产值函数R (x)=3700x + 45x – 3
10x(单位:万元), 成本函数为C (x) = 460x + 5000 (单位:万元). 又在经济学中,函数f(x)的边际函数Mf (x)定义为: Mf (x) = f (x+1) – f (x). 求:(提示:利润 = 产值 – 成本)
(1) 利润函数P(x) 及边际利润函数MP(x);
(2) 年造船量安排多少艘时, 可使公司造船的年利润最大?
(3) 边际利润函数MP(x)的单调递减区间, 并说明单调递减在本题中的实际意义是什么?
3. 已知函数?(x)?5x2?5x?1(x?R),函数y?f(x)的图象与?(x)的图象关于点
1(0,)中心对称。 2(1)求函数y?f(x)的解析式;
(2)如果g1(x)?f(x),gn(x)?f[gn?1(x)](n?N,n?2),试求出使g
高中数学函数压轴题(精制)
高考数学函数压轴题:
1. 已知函数f(x)?134x?ax?b(a,b?R)在x?2处取得的极小值是?. 33(1)求f(x)的单调递增区间;
(2)若x?[?4,3]时,有f(x)?m?m?210恒成立,求实数m的取值范围. 3
2
2. 某造船公司年最高造船量是20艘. 已知造船x艘的产值函数R (x)=3700x + 45x – 3
10x(单位:万元), 成本函数为C (x) = 460x + 5000 (单位:万元). 又在经济学中,函数f(x)的边际函数Mf (x)定义为: Mf (x) = f (x+1) – f (x). 求:(提示:利润 = 产值 – 成本)
(1) 利润函数P(x) 及边际利润函数MP(x);
(2) 年造船量安排多少艘时, 可使公司造船的年利润最大?
(3) 边际利润函数MP(x)的单调递减区间, 并说明单调递减在本题中的实际意义是什么?
3. 已知函数?(x)?5x2?5x?1(x?R),函数y?f(x)的图象与?(x)的图象关于点
1(0,)中心对称。 2(1)求函数y?f(x)的解析式;
(2)如果g1(x)?f(x),gn(x)?f[gn?1(x)](n?N,n?2),试求出使g
高中数学压轴题系列——导数专题——超越不等式放缩
高中数学压轴题系列——导数专题——超越不等式放缩
1.(2010?大纲版Ⅰ)已知函数f(x)=(x+1)lnx﹣x+1.
(Ⅰ)若xf′(x)≤x2+ax+1,求a的取值范围;(Ⅱ)证明:(x﹣1)f(x)≥0. 解:(Ⅰ)
,xf′(x)=xlnx+1,
题设xf′(x)≤x2+ax+1等价于lnx﹣x≤a.令g(x)=lnx﹣x,则
当0<x<1,g′(x)>0;当x≥1时,g′(x)≤0,x=1是g(x)的最大值点,g(x)≤g(1)=﹣1 综上,a的取值范围是[﹣1,+∞).
(Ⅱ)由(Ⅰ)知,g(x)≤g(1)=﹣1即lnx﹣x+1≤0. 当0<x<1时,f(x)=(x+1)lnx﹣x+1=xlnx+(lnx﹣x+1)<0; 当x≥1时,f(x)=lnx+(xlnx﹣x+1)= 所以(x﹣1)f(x)≥0.
2.(2010?大纲版Ⅱ)设函数f(x)=1﹣e﹣x. (Ⅰ)证明:当x>﹣1时,f(x)≥解:(1)当x>﹣1时,f(x)≥
;(Ⅱ)设当x≥0时,f(x)≤
,求a的取值范围.
=
≥0
当且仅当ex≥1+x 令g(x)=ex﹣x﹣1,则g'(x)=ex﹣1
当x≥0时g'(x)≥0,g(x)在[0,+∞)是增函数 当x≤0时g
原创高三导数压轴题题型归纳 - 图文
导数压轴题题型归纳
1. 高考命题回顾
例1已知函数f(x)=ex-ln(x+m).(2013全国新课标Ⅱ卷)
(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0.
例2已知函数f(x)=x2+ax+b,g(x)=ex(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且
在点P处有相同的切线y=4x+2(2013全国新课标Ⅰ卷) (Ⅰ)求a,b,c,d的值
(Ⅱ)若x≥-2时, f(x)?kg(x),求k的取值范围。 例3已知函数f(x)满足f(x)?f'(1)ex?12. 在解题中常用的有关结论※
(1)曲线y?f(x)在x?x0处的切线的斜率等于f?(x0),且切线方程为y?f?(x0)(x?x0)?f(x0)。 f?(x0)?0。反之,不成立。 (2)若可导函数y?f(x)在 x?x0 处取得极值,则(3)对于可导函数f(x),不等式f?(x)?0??0?的解集决定函数f(x)的递增(减)区间。 ?0(?0)恒成立(f?(x) 不恒为(4)函数f(x)在区间I上递增(减)的充要条件是:?x?If?(x)0). (5)函数f(x)(非常量函数)在区间I上不单调等价于f(x
高中数学高考导数题型分析及解题方法
导数题型分析及解题方法
一、考试内容
导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。 二、热点题型分析
题型一:利用导数研究函数的极值、最值。
32
f(x) x 3x 2在区间 1,1 上的最大值是 2 1.
题型二:利用导数几何意义求切线方程
4
1.若曲线f(x) x x在P点处的切线平行于直线3x y 0,则P点的坐标为 (1,0)
4
y x2.若曲线的一条切线l与直线x 4y 8 0垂直,则l的方程为 4x y 3 0
题型三:利用导数研究函数的单调性,极值、最值
32
f(x) x ax bx c,过曲线y f(x)上的点P(1,f(1))的切线方程为y=3x+1 1.已知函数
(Ⅰ)若函数f(x)在x 2处有极值,求f(x)的表达式;
(Ⅱ)在(Ⅰ)的条件下,求函数y f(x)在[-3,1]上的最大值; (Ⅲ)若函数y f(x)在区间[-2,1]上单调递增,求实数b的取值范围
322
f(x) x ax bx c,求导数得f(x) 3x 2ax b. 解:(1)由
过y f(x)上点P(1,f(1))的切线方程为:
y f(