微分几何第三版梅向明pdf

“微分几何第三版梅向明pdf”相关的资料有哪些?“微分几何第三版梅向明pdf”相关的范文有哪些?怎么写?下面是小编为您精心整理的“微分几何第三版梅向明pdf”相关范文大全或资料大全,欢迎大家分享。

微分几何(第三版)梅向明黄敬之编

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

微分几何主要习题解答

第一章 曲线论

§2 向量函数

5. 向量函数r(t)具有固定方向的充要条件是r(t) ×

???????r'(t)= 0。

? 分析:一个向量函数r(t)一般可以写成r(t)=?(t)e(t)的形式,其中e(t)为单位向

??量函数,?(t)为数量函数,那么r(t)具有固定方向的充要条件是e(t)具有固定方向,??即e(t)为常向量,(因为e(t)的长度固定)。

????? 证 对于向量函数r(t),设e(t)为其单位向量,则r(t)=?(t)e(t),若r(t)具有固

????????定方向,则e(t)为常向量,那么r'(t)=?'(t)e,所以 r×r'=??'(e×e)=0。

?????????反之,若r×r'=0 ,对r(t)=?(t)e(t) 求微商得r'=?'e+?e',于是r×

?????????2r'=?(e×e')=0,则有 ? = 0 或e×e'=0 。当?(t)= 0时,r(t)=0可与任意方

???????????向平行;当??0时,有e×e'=0,而(e×e')2=e2e'2-(e·e')2=e'2,(因为e??????具有固定长, e·e'= 0) ,所以 e'=0,即e为常向量。所以

微分几何(第三版)梅向明 - 黄敬之 - 编第三章课后题答案

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

微分几何主要习题解答

§4.直纹面和可展曲面

?12 1. 证明曲面r={u2?v,2u3?uv,u4?u2v}是可展曲面.

33?r12证法一: 已知曲面方程可改写为r={u2,2u3,u4}+v{,u,u2},令a(u)={u2,2u3,u4},

33rrr?r122rb(u)={,u,u},则=a(u)+ vb(u),且b(u)?0,这是直纹面的方程 ,它满足

332u6u2rrr1u(a',b,b')=3014u322u=0 ,所以所给曲面为可展曲面。 34u3证法二:证明曲面的高斯曲率为零。(略)

rrb(v)={-sinv, cosv,1} ,易见b(v)?0,所以曲面为直纹面,又因为

?2sinv?vcosv2cosv?vsinv2rrr?sinvcosv1=0,所以所给曲面为可展曲面。 (a',b,b')=

?cosv?sinv0证法二:证明曲面的高斯曲率为零。(略)

?2。证明曲面r={cosv-(u+v)sinv, sinv+(u+v)cosv,u+2v}是可展曲面。

r?rr证法一: 曲面的方程可改写为 r=a(v)+ ub(v),其中a(v)={cosv-vsinv,

微分几何(第三版)梅向明 - 黄敬之 - 编第三章课后题答案

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

微分几何主要习题解答

§4.直纹面和可展曲面

?12r 1. 证明曲面={u2?v,2u3?uv,u4?u2v}是可展曲面.

33?12r证法一: 已知曲面方程可改写为={u2,2u3,u4}+v{,u,u2},令

33rrr?rr122234a(u)={u,2u,u},b(u)={,u,u},则r=a(u)+ vb(u),且b(u)?0,这是直

33纹面的方程 ,它满足

2u6u2rrr1u(a',b,b')=3014u322u=0 ,所以所给曲面为可展曲面。 34u3证法二:证明曲面的高斯曲率为零。(略)

?2。证明曲面r={cosv-(u+v)sinv, sinv+(u+v)cosv,u+2v}是可展曲面。

r?rr证法一: 曲面的方程可改写为 r=a(v)+ ub(v),其中a(v)={cosv-vsinv, rrsinv+vcosv, 2v},b(v)={-sinv, cosv,1} ,易见b(v)rrr又因为(a',b,b')=

?2sinv?vcosv2cosv?vsinv2?sinv?cosvcosv?sinv1=0,所以所给曲面为可展曲面。 0?0,所以曲面为直纹面,

证法二

微分几何(第三版)梅向明 - 黄敬之 - 编第三章课后题答案

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

微分几何主要习题解答

§4.直纹面和可展曲面

?12r 1. 证明曲面={u2?v,2u3?uv,u4?u2v}是可展曲面.

3333rrr?rr122234vb(u),且b(u)?0,这是a(u)={u,2u,u},b(u)={,u,u},则r=a(u)+

33直纹面的方程 ,它满足

?12r证法一: 已知曲面方程可改写为={u2,2u3,u4}+v{,u,u2},令

2u6u2rrr1u(a',b,b')=3014u322u=0 ,所以所给曲面为可展曲面。 34u3证法二:证明曲面的高斯曲率为零。(略)

?2。证明曲面r={cosv-(u+v)sinv, sinv+(u+v)cosv,u+2v}是可展曲面。

r?rr证法一: 曲面的方程可改写为 r=a(v)+ ub(v),其中a(v)={cosv-vsinv, rrsinv+vcosv, 2v},b(v)={-sinv, cosv,1} ,易见b(v)?0,所以曲面为直纹

1=0,所以所给曲面为0rrr面,又因为(a',b,b')=可展曲面。

?2sinv?vcosv2cosv?vsinv2?sinv?cosvcosv?sinv证法二

微分几何(第三版)梅向明 - 黄敬之 - 编第三章课后题答案

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

微分几何主要习题解答

§4.直纹面和可展曲面

?12 1. 证明曲面r={u2?v,2u3?uv,u4?u2v}是可展曲面.

33?r12证法一: 已知曲面方程可改写为r={u2,2u3,u4}+v{,u,u2},令a(u)={u2,2u3,u4},

33rrr?r122rb(u)={,u,u},则=a(u)+ vb(u),且b(u)?0,这是直纹面的方程 ,它满足

332u6u2rrr1u(a',b,b')=3014u322u=0 ,所以所给曲面为可展曲面。 34u3证法二:证明曲面的高斯曲率为零。(略)

rrb(v)={-sinv, cosv,1} ,易见b(v)?0,所以曲面为直纹面,又因为

?2sinv?vcosv2cosv?vsinv2rrr?sinvcosv1=0,所以所给曲面为可展曲面。 (a',b,b')=

?cosv?sinv0证法二:证明曲面的高斯曲率为零。(略)

?2。证明曲面r={cosv-(u+v)sinv, sinv+(u+v)cosv,u+2v}是可展曲面。

r?rr证法一: 曲面的方程可改写为 r=a(v)+ ub(v),其中a(v)={cosv-vsinv,

微分几何(版)梅向明黄敬之编课后题答案

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

第二章 曲面论 §1曲面的概念

1.求正螺面r={ ucosv ,u sinv, bv }的坐标曲线.

解 u-曲线为r={ucosv0 ,u sinv0,bv0 }={0,0,bv0}+u {cosv0,sinv0,0},为曲线的直母线;v-曲线为r={u0cosv,u0sinv,bv }为圆柱螺线.

2.证明双曲抛物面r={a(u+v), b(u-v),2uv}的坐标曲线就是它的直母线.

证 u-曲线为r={ a(u+v0), b(u-v0),2uv0}={ av0, bv0,0}+ u{a,b,2v0}表示过点{ av0, bv0,0}以{a,b,2v0}为方向向量的直线;

v-曲线为r={a(u0+v), b(u0-v),2u0v}={au0, bu0,0}+v{a,-b,2u0}表示过点(au0, bu0,0)以{a,-b,2u0}为方向向量的直线.

3.求球面r={acos?sin?,acos?sin?,asin?}上任意点的切平面和法线方程.

??解 r?={?asin?cos?,?asin?sin?,acos?} ,r?={?acos?sin?,acos?cos?,0}

x?acos?cos?y?acos?sin??as

《常微分方程》(第三版) - 答案

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

常微分方程

2.1

dy?2xy,并求满足初始条件:x=0,y=1的特解. dx 解:对原式进行变量分离得

1.

1dy?2xdx,两边同时积分得:lny?yc?1,故它的特解为y?ex。2x2?c,即y?cex把x?0,y?1代入得2

2.ydx?(x?1)dy?0,并求满足初始条件:x=0,y=1的特解.

2解:对原式进行变量分离得:

?1111dx?2dy,当y?0时,两边同时积分得;lnx?1??c,即y?x?1yc?lnx?1y当y?0时显然也是原方程的解。当x?0,y?1时,代入式子得c?1,故特解是1y?。1?ln1?x

ydy3 ?dxxy?x1?23y

解:原式可化为:

dy?dx1?y2y?1x?x显然31?y2y?0,故分离变量得y1?ydy?21x?x23dx221两边积分得ln1?2y212?lnx?ln1?x?lnc(c?0),即(1?2(1?x)?cxy)222y)(1?x)?cx

故原方程的解为(1?4:(1?x)ydx?(1?y)xdy?01?x1?y解:由y?0或x?0是方程的解,当xy?0时,变量分离dx?dy?0xy两边积分lnx?x?lny?y?c,即lnxy?x?y?c,故原方程的

《常微分方程》(第三版) - 答案

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

常微分方程

2.1

dy?2xy,并求满足初始条件:x=0,y=1的特解. dx 解:对原式进行变量分离得

1.

1dy?2xdx,两边同时积分得:lny?yc?1,故它的特解为y?ex。2x2?c,即y?cex把x?0,y?1代入得2

2.ydx?(x?1)dy?0,并求满足初始条件:x=0,y=1的特解.

2解:对原式进行变量分离得:

?1111dx?2dy,当y?0时,两边同时积分得;lnx?1??c,即y?x?1yc?lnx?1y当y?0时显然也是原方程的解。当x?0,y?1时,代入式子得c?1,故特解是1y?。1?ln1?x

ydy3 ?dxxy?x1?23y

解:原式可化为:

dy?dx1?y2y?1x?x显然31?y2y?0,故分离变量得y1?ydy?21x?x23dx221两边积分得ln1?2y212?lnx?ln1?x?lnc(c?0),即(1?2(1?x)?cxy)222y)(1?x)?cx

故原方程的解为(1?4:(1?x)ydx?(1?y)xdy?01?x1?y解:由y?0或x?0是方程的解,当xy?0时,变量分离dx?dy?0xy两边积分lnx?x?lny?y?c,即lnxy?x?y?c,故原方程的

常微分方程第三版课后答案

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

常微分方程 习题2.2

求下列方程的解 1.

dy

dx

=y sinx 解: y=e dx( sinxe dx

dx c)

=ex[-

12e x

(sinx cosx)+c] =c ex-1

2

(sinx cosx)是原

方程的解。 2.

dx

dt

+3x=e2t 解:原方程可化为:

dx

=-3x+e2tdt

所以:x=e 3dt

(

e

2t

e

3dt

dt c) =e 3t (1

e5t5+c)

=c e 3t+1

e2t5

是原方

程的解。

3.

ds

dt

=-scost+12sin2t

解:s=e costdt( 1

2

sin2te 3dtdt c )

=e sint( sintcostesintdt c) = e sint(sintesint esint c) =ce sint sint 1 是原方程的解。 4.

dydx x

n

y exxn , n为常数. 解:原方程可化为:dydx x

n

y exxn

n

n

y e

xdx

( exxn

e

xdx

dx c)

xn(ex c) 是原方程的解.

5.

dydx+1 2x

x

2y 1=0 解:原方程可化为:dydx=-1 2x

x

2y 1

x 1 2xy e

2x

2

dx

(e

1x2

dx

dx c)

2 e

(lnx 1

常微分方程第三版课后答案

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

常微分方程 习题2.2

求下列方程的解 1.

dy

dx

=y sinx 解: y=e dx( sinxe dx

dx c)

=ex[-

12e x

(sinx cosx)+c] =c ex-1

2

(sinx cosx)是原

方程的解。 2.

dx

dt

+3x=e2t 解:原方程可化为:

dx

=-3x+e2tdt

所以:x=e 3dt

(

e

2t

e

3dt

dt c) =e 3t (1

e5t5+c)

=c e 3t+1

e2t5

是原方

程的解。

3.

ds

dt

=-scost+12sin2t

解:s=e costdt( 1

2

sin2te 3dtdt c )

=e sint( sintcostesintdt c) = e sint(sintesint esint c) =ce sint sint 1 是原方程的解。 4.

dydx x

n

y exxn , n为常数. 解:原方程可化为:dydx x

n

y exxn

n

n

y e

xdx

( exxn

e

xdx

dx c)

xn(ex c) 是原方程的解.

5.

dydx+1 2x

x

2y 1=0 解:原方程可化为:dydx=-1 2x

x

2y 1

x 1 2xy e

2x

2

dx

(e

1x2

dx

dx c)

2 e

(lnx 1