卷积神经网络实验报告
“卷积神经网络实验报告”相关的资料有哪些?“卷积神经网络实验报告”相关的范文有哪些?怎么写?下面是小编为您精心整理的“卷积神经网络实验报告”相关范文大全或资料大全,欢迎大家分享。
BP神经网络实验报告
作业8
编程题实验报告
(一)实验内容:
实现多层前馈神经网络的反向传播学习算法。使用3.2节上机生成的数据集对神经网络进行训练和测试,观察层数增加和隐层数增加是否会造成过拟合。 (二)实验原理:
1)前向传播:
以单隐层神经网络为例(三层神经网络),则对于第k个输出节点,输出结果为:
在实验中采用的激励函数为logistic sigmoid function。 考虑每一层节点中的偏差项,所以,在上式中:
x0?1,wj0?b(l)
在实验中,就相应的需要注意矢量形式表达式中,矢量大小的调整。
2)BP算法:
a) 根据问题,合理选择输入节点,输出节点数,确定隐层数以及各隐层节点数; b) 给每层加权系数,随机赋值;
c) 由给定的各层加权系数,应用前向传播算法,计算得到每层节点输出值,并计算对于所有训练样本的均方误差;
d) 更新每层加权系数:
(l)
其中,?i(l)?(yi?di)?h'(ai(l)),?(l?1)??(?i?wji?h'(ai),???j最后一层其它层
e) 重复c),d)迭代过程,直至迭代步数大于预设值,或者每次迭代误差变化值小于预设值时,迭代结束,得到神经网络的各层加权系数。 (三)实验数据及程序:
1)实验数
BP神经网络实验报告
作业8
编程题实验报告
(一)实验内容:
实现多层前馈神经网络的反向传播学习算法。使用3.2节上机生成的数据集对神经网络进行训练和测试,观察层数增加和隐层数增加是否会造成过拟合。 (二)实验原理:
1)前向传播:
以单隐层神经网络为例(三层神经网络),则对于第k个输出节点,输出结果为:
在实验中采用的激励函数为logistic sigmoid function。 考虑每一层节点中的偏差项,所以,在上式中:
x0?1,wj0?b(l)
在实验中,就相应的需要注意矢量形式表达式中,矢量大小的调整。
2)BP算法:
a) 根据问题,合理选择输入节点,输出节点数,确定隐层数以及各隐层节点数; b) 给每层加权系数,随机赋值;
c) 由给定的各层加权系数,应用前向传播算法,计算得到每层节点输出值,并计算对于所有训练样本的均方误差;
d) 更新每层加权系数:
(l)
其中,?i(l)?(yi?di)?h'(ai(l)),?(l?1)??(?i?wji?h'(ai),???j最后一层其它层
e) 重复c),d)迭代过程,直至迭代步数大于预设值,或者每次迭代误差变化值小于预设值时,迭代结束,得到神经网络的各层加权系数。 (三)实验数据及程序:
1)实验数
卷积神经网络CNN代码解析
卷积神经网络CNN代码解析
deepLearnToolbox-master是一个深度学习matlab包,里面含有很多机器学习算法,如卷积神经网络CNN,深度信念网络DBN,自动编码AutoEncoder(堆栈SAE,卷积CAE)的作者是 Rasmus Berg Palm
代码下载:https://http://www.77cn.com.cn/rasmusbergpalm/DeepLearnToolbox
这里我们介绍deepLearnToolbox-master中的CNN部分。
DeepLearnToolbox-master中CNN内的 函数:
调用关系为:
该模型使用了mnist的数字mnist_uint8.mat作为训练样本,作为cnn的一个使用样例, 每个样本特征为一个28*28=的向量。
网络结构为:
让我们来看看各个函数:
一、Test_example_CNN: .................................................................................................................................................
卷积神经网络CNN相关代码注释
cnnexamples.m
[plain] view plaincopy
1. clear all; close all; clc; 2. addpath('../data'); 3. addpath('../util'); 4. load mnist_uint8; 5.
6. train_x = double(reshape(train_x',28,28,60000))/255; 7. test_x = double(reshape(test_x',28,28,10000))/255; 8. train_y = double(train_y'); 9. test_y = double(test_y'); 10.
11. %% ex1
12. %will run 1 epoch in about 200 second and get around 11% error. 13. %With 100 epochs you'll get around 1.2% error 14.
15. cnn.layers = {
16. struct('type', 'i') %in
卷积神经网络CNN相关代码注释
cnnexamples.m
[plain] view plaincopy
1. clear all; close all; clc; 2. addpath('../data'); 3. addpath('../util'); 4. load mnist_uint8; 5.
6. train_x = double(reshape(train_x',28,28,60000))/255; 7. test_x = double(reshape(test_x',28,28,10000))/255; 8. train_y = double(train_y'); 9. test_y = double(test_y'); 10.
11. %% ex1
12. %will run 1 epoch in about 200 second and get around 11% error. 13. %With 100 epochs you'll get around 1.2% error 14.
15. cnn.layers = {
16. struct('type', 'i') %in
基于卷积神经网络的正则化方法
计算机研究与发展DOI:10.7544/issnl000
JournalofComputerResearchandDevelopment
1239.2014.20140266
1900,2014
51(9):1891
基于卷积神经网络的正则化方法
吕国豪
罗四维
黄雅平蒋欣兰
北京
100044)
(北京交通大学交通数据分析与挖掘北京市重点实验室(1vguohao@bjtu.edu.cn)
ANovelRegularization
Method
a
a
Based
on
ConvolutionNeuralNetwork
LnGuohao,LuoSiwei。HuangY耐
X.¨dam
诧g
,
(BeijingKey
Laboratory
ofTraffic
D以
嗜m,以≯|Ⅲn㈨盯d曙M
is
●Be
g
∞_宝
g
University,Beijing100044)
inverse
Abstract
Regularization
method
widely
usedin
solving
the
problem.An
accurate
regularizationmodel
playsthemost
importantpartinsolvingtheinverse
problem.Theenergy
constraints
多级卷积神经网络的胰腺自动分割 - 图文
基于多级深度卷积网络的胰腺自动分割
摘要:器官自动分割是医学图像分析的一个重要而具有挑战性的问题。胰腺是腹部具有非常高的解剖变异性的器官。 用之前肝肾脏或者心脏的分割方法很难达到很高的精确度。在本文中,我们提出了一个用多级卷积网络基于概率的自下而上的方法对腹部CT图像的胰腺进行自动分割。我们提出并评估几个深度卷积网络在分层上的变异,在图像块和区域上的粗到细的分类器例如超像素。首先我们通过(P-ConvNet)卷积网络和近邻融合方法呈现出一个局部图像块的密集标签。然后我们描述一个局部卷积网络(R1-ConvNets)即在不同规模的缩小的区域中的围绕每一个图像超像素采集一系列边界框。(我们的卷积网络学会为每个胰腺的超像素区域分配类概率)。最后,我们利用CT强度的连接空间和P-ConvNet密度概率图学习一个堆叠的R2-ConvNets。3D的高斯去噪和2D的条件随机场用来后处理的预测。我们用4倍交叉验证评价82个病人的CT图像。我们实现了戴斯相似系数在训练时83.6±6.3%在测试时71.8±10.7%。 1、引言
胰腺的分割是计算机辅助诊断系统(CADx)的前提提供了器官单元的量化分析,例如糖尿病患者。精确分割对于计算机辅助诊断发现胰腺癌也是
多级卷积神经网络的胰腺自动分割 - 图文
基于多级深度卷积网络的胰腺自动分割
摘要:器官自动分割是医学图像分析的一个重要而具有挑战性的问题。胰腺是腹部具有非常高的解剖变异性的器官。 用之前肝肾脏或者心脏的分割方法很难达到很高的精确度。在本文中,我们提出了一个用多级卷积网络基于概率的自下而上的方法对腹部CT图像的胰腺进行自动分割。我们提出并评估几个深度卷积网络在分层上的变异,在图像块和区域上的粗到细的分类器例如超像素。首先我们通过(P-ConvNet)卷积网络和近邻融合方法呈现出一个局部图像块的密集标签。然后我们描述一个局部卷积网络(R1-ConvNets)即在不同规模的缩小的区域中的围绕每一个图像超像素采集一系列边界框。(我们的卷积网络学会为每个胰腺的超像素区域分配类概率)。最后,我们利用CT强度的连接空间和P-ConvNet密度概率图学习一个堆叠的R2-ConvNets。3D的高斯去噪和2D的条件随机场用来后处理的预测。我们用4倍交叉验证评价82个病人的CT图像。我们实现了戴斯相似系数在训练时83.6±6.3%在测试时71.8±10.7%。 1、引言
胰腺的分割是计算机辅助诊断系统(CADx)的前提提供了器官单元的量化分析,例如糖尿病患者。精确分割对于计算机辅助诊断发现胰腺癌也是
BP神经网络实验_Matlab
计算智能实验报告
实验名称:BP神经网络算法实验
班级名称:专 业:姓 名:学 号:
级软工三班 软件工程 李XX
2010 XXXXXX2010090
一、 实验目的
1)编程实现BP神经网络算法;
2)探究BP算法中学习因子算法收敛趋势、收敛速度之间的关系;
3)修改训练后BP神经网络部分连接权值,分析连接权值修改前和修改后对相同测试样本测试结果,理解神经网络分布存储等特点。
二、 实验要求
按照下面的要求操作,然后分析不同操作后网络输出结果。 1)可修改学习因子
2)可任意指定隐单元层数
3)可任意指定输入层、隐含层、输出层的单元数 4)可指定最大允许误差ε
5)可输入学习样本(增加样本)
6)可存储训练后的网络各神经元之间的连接权值矩阵;
7)修改训练后的BP神经网络部分连接权值,分析连接权值修改前和修改后对相同测试样本测试结果 。
三、 实验原理
1 明确BP神经网络算法的基本思想如下:
在BPNN中,后向传播是一种学习算法,体现为BPNN的训练过程,该过程是需要教师指导的;前馈型网络是一种结构,体现为BPNN的网络构架
反向传播算法通过迭代处理的方式,不断地调整连接神经元的网络权重,使得最终输出结
人工神经网络实验指导
人工神经网络实验指导《人工神经网络》
实验指导
北京工商大学信息工程学院《人工神经网络》课程组编写
1 / 22
人工神经网络实验指导
目录
第一部分实验准备 (1)
第1章NeuDesk软件 (2)
1.1NeuDesk软件概述 (2)
1.2NeuDesk软件使用说明 (2)
1.2.1样本的输入 (2)
第2章Matlab神经网络工具箱 (6)
2.1 MATLAB 神经网络工具箱概述 (6)
2.1.1神经网络工具箱的帮助和安装 (6)
2.2 MATLAB 神经网络工具箱函数 (6)
2.2.1 网络创建函数 (6)
2.2.2 网络应用函数 (7)
2.2.3 权函数 (7)
2.2.4 网络输入函数 (7)
2.2.5 转移函数 (7)
2.2.6 初始化函数 (8)
2.2.7 性能分析函数 (8)
2.2.8 学习函数 (8)
2.2.9 自适应函数 (8)
2.2.10 训练函数 (8)
2.2.11 分析函数 (8)
2.2.12 绘图函数 (8)
2.2.13 符号变换函数 (9)
2.2.14 拓扑函数 (9)
2.3 MATLAB使用说明 (9)
2.3.1MATLAB界面 (9)
2.3.2在MATLAB环境下运行程序 (9)
第二部分实验 (13)
第3章BP网络的设计 (1