离散数学集合论证明题

“离散数学集合论证明题”相关的资料有哪些?“离散数学集合论证明题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“离散数学集合论证明题”相关范文大全或资料大全,欢迎大家分享。

离散数学之集合论

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

离散数学四大核心:代数系统、集合论、数理逻辑、图论。

第二篇 集合与关系

集合论是现代各科数学的基础,它是德国数学家康托(Geog Cantor, 1845~1918)于1874年创立的,1876~1883年康托一系列有关集合论的文章,对任意元的集合进行了深入的探讨,提出了关于基数、序数和良序集等理论,奠定了集合论深厚的基础,19世纪90年代后逐渐为数学家们采用,成为分析数学、代数和几何的有力工具。

随着集合论的发展,以及它与数学哲学密切联系所作的讨论,在1900年前后出现了各种悖论,使集合的发展一度陷入僵滞的局面。1904~1908年,策墨罗(Zermelo)列出了第一个集合论的公理系统,它的公理,使数学哲学中产生的一些矛盾基本上得到了统一,在此基础上以后就逐渐形成了公理化集合论和抽象集合论,使该学科成为在数学中发展最为迅速的一个分支。

现在,集合论已经成为内容充实、实用广泛的一门学科,在近代数学中占据重要地位,它的观点已渗透到古典分析、泛函、概率、函数论、信息论、排队论等现代数学各个分支,正在影响着整个数学科学。集合论在计算机科学中也具有十分广泛的应用,计算机科学领域中的大多数基本概念和理论几乎均采用集合论的有关术语来描述和论证,成为计算机科

离散数学之集合论

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

第二篇 集合与关系

集合论是现代各科数学的基础,它是德国数学家康托(Geog Cantor, 1845~1918)于1874年创立的,1876~1883年康托一系列有关集合论的文章,对任意元的集合进行了深入的探讨,提出了关于基数、序数和良序集等理论,奠定了集合论深厚的基础,19世纪90年代后逐渐为数学家们采用,成为分析数学、代数和几何的有力工具。

随着集合论的发展,以及它与数学哲学密切联系所作的讨论,在1900年前后出现了各种悖论,使集合的发展一度陷入僵滞的局面。1904~1908年,策墨罗(Zermelo)列出了第一个集合论的公理系统,它的公理,使数学哲学中产生的一些矛盾基本上得到了统一,在此基础上以后就逐渐形成了公理化集合论和抽象集合论,使该学科成为在数学中发展最为迅速的一个分支。

现在,集合论已经成为内容充实、实用广泛的一门学科,在近代数学中占据重要地位,它的观点已渗透到古典分析、泛函、概率、函数论、信息论、排队论等现代数学各个分支,正在影响着整个数学科学。集合论在计算机科学中也具有十分广泛的应用,计算机科学领域中的大多数基本概念和理论几乎均采用集合论的有关术语来描述和论证,成为计算机科学工作者必不可少的基础知识。集合论可作为数学学

离散数学之集合论

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

离散数学四大核心:代数系统、集合论、数理逻辑、图论。

第二篇 集合与关系

集合论是现代各科数学的基础,它是德国数学家康托(Geog Cantor, 1845~1918)于1874年创立的,1876~1883年康托一系列有关集合论的文章,对任意元的集合进行了深入的探讨,提出了关于基数、序数和良序集等理论,奠定了集合论深厚的基础,19世纪90年代后逐渐为数学家们采用,成为分析数学、代数和几何的有力工具。

随着集合论的发展,以及它与数学哲学密切联系所作的讨论,在1900年前后出现了各种悖论,使集合的发展一度陷入僵滞的局面。1904~1908年,策墨罗(Zermelo)列出了第一个集合论的公理系统,它的公理,使数学哲学中产生的一些矛盾基本上得到了统一,在此基础上以后就逐渐形成了公理化集合论和抽象集合论,使该学科成为在数学中发展最为迅速的一个分支。

现在,集合论已经成为内容充实、实用广泛的一门学科,在近代数学中占据重要地位,它的观点已渗透到古典分析、泛函、概率、函数论、信息论、排队论等现代数学各个分支,正在影响着整个数学科学。集合论在计算机科学中也具有十分广泛的应用,计算机科学领域中的大多数基本概念和理论几乎均采用集合论的有关术语来描述和论证,成为计算机科

离散数学之集合论

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

第二篇 集合与关系

集合论是现代各科数学的基础,它是德国数学家康托(Geog Cantor, 1845~1918)于1874年创立的,1876~1883年康托一系列有关集合论的文章,对任意元的集合进行了深入的探讨,提出了关于基数、序数和良序集等理论,奠定了集合论深厚的基础,19世纪90年代后逐渐为数学家们采用,成为分析数学、代数和几何的有力工具。

随着集合论的发展,以及它与数学哲学密切联系所作的讨论,在1900年前后出现了各种悖论,使集合的发展一度陷入僵滞的局面。1904~1908年,策墨罗(Zermelo)列出了第一个集合论的公理系统,它的公理,使数学哲学中产生的一些矛盾基本上得到了统一,在此基础上以后就逐渐形成了公理化集合论和抽象集合论,使该学科成为在数学中发展最为迅速的一个分支。

现在,集合论已经成为内容充实、实用广泛的一门学科,在近代数学中占据重要地位,它的观点已渗透到古典分析、泛函、概率、函数论、信息论、排队论等现代数学各个分支,正在影响着整个数学科学。集合论在计算机科学中也具有十分广泛的应用,计算机科学领域中的大多数基本概念和理论几乎均采用集合论的有关术语来描述和论证,成为计算机科学工作者必不可少的基础知识。集合论可作为数学学

离散数学复习题题库-证明题

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

编号 1 题目 答案 答:先求出左右两个公式 的主合取范式 题型 证明题 分值 10 区难大纲 分度 度 2.3;2.4 3 3 用先求主范式的方法证明(P→Q)?(P→R) ? (P→(Q?R) (P→Q)?(P→R) ?(?P?Q)?(?P?R) ?(?P?Q?(R??R)))?(?P?(Q??Q)?R) ?(?P?Q?R)?(?P?Q??R)?(?P?Q?R)?(?P??Q?R) ? (?P?Q??R)?(?P?Q?R)?(?P??Q?R) (P→(Q?R)) ?(?P?(Q?R)) ?(?P?Q)?(?P?R) ?(?P?Q?(R??R))?(?P?(Q??Q)?R) ? (?P?Q?R)?(?P?Q??R)?(?P?Q?R)?(?P??Q?R) ? (?P?Q??R)?(?P?Q?R)?(?P??Q?R) 它们有一样的主合取范式,所以它们等价。 2 给定连通简单平面图G=,且|V|=6, |E|=12, 答:因为|V|=6?3,且G=〈V,E,F〉是一个连通简单无向平面图, 所以对任一f?F,deg(f)?3。 证明题 10 6.4 3 3 则对于任意f?F, d(f)=3。 由欧拉公式|V|-|E|+|F|=2可得

离散数学集合论练习题

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

集合论练习题

一、选择题

1.设B = { {2}, 3, 4, 2},那么下列命题中错误的是( ).

A.{2}?B B.{2, {2}, 3, 4}?B C.{2}?B D.{2, {2}}?B 2.若集合A={a,b,{ 1,2 }},B={ 1,2},则( ). A.B ? A,且B?A B.B? A,但B?A C.B ? A,但B?A D.B? A,且B?A 3.设集合A = {1, a },则P(A) = ( ).

A.{{1}, {a}} B.{?,{1}, {a}} C.{?,{1}, {a}, {1, a }} D.{{1}, {a}, {1, a }} 4.已知A?B={1,2,3}, A?C={2,3,4},若2? B,则( )

A. 1?C B.2?C C.3?C D.4?C

集合论与图论 离散数学 模拟题1

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

一.列式题。用谓词表示法表示如下集合: 1. 所有偶数组成的集合A

A={x| x∈Z ∧ x mod 2 =0}. 2. 所有奇数组成的集合B

B={x| x∈Z ∧ x mod 2 =1}. 3. 10的整倍数组成的集合A

A={x| x∈Z ∧x mod 10 =0}. 4. 5的整倍数组成的集合B

A={x| x∈Z ∧x mod 5 =0}.

5. 方程x2-1=0的所有实数解的集合B。

B={x|x∈R ∧x2-1=0}

6. 小于5的非负整数组成的集合A:A={x | x ∈ N ∧ x < 5 }.

二.判断题 1.( F )包含三个元素的集合A表示成:A=(1,2,3)。 2.( F )集合A ={1,2,3}与集合B ={2,3,1}是两个不同的集合。 3.( T )R=Φ是一个二元关系。 4.( T )设A= {1, 2, 3},R= {<1, 1>, <2, 2>, <3, 3>, <1, 2>},则R是A上自反的关系。 5.( T )设A= {1, 2, 3},R= {<1, 1>, <1, 2>, <2, 1>},则R是A上对称的关系。 6.( T )设A= {1, 2, 3},R= {<1, 2>,<1, 3>},则R是A上反对称的关系。 7.( T )设A= {1, 2, 3},R= {<1, 1>,<2, 2>},则R是A上

数学证明题技巧

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

第1篇:数学证明题解题技巧

证明

徐琛同学,系黄山学院文学院20xx年度被同学选为学习委员。其工作尽职尽责,深得全班学生和老师的认可。

特此证明

黄山学院文学院

20xx年4月28日

第2篇:数学几何证明题技巧

要掌握初中数学几何证明题技巧,熟练运用和记忆如下原理是关键。下面归类一下,多做练习,熟能生巧,遇到几何证明题能想到采用哪一类型原理来解决问题。 一、证明两线段相等

1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。

3.等腰三角形顶角的平分线或底边的高平分底边。 4.平行四边形的对边或对角线被交点分成的两段相等。 5.直角三角形斜边的中点到三顶点距离相等。 6.线段垂直平分线上任意一点到线段两段距离相等。 7.角平分线上任一点到角的两边距离相等。

8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

*9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。 *10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。

11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等*12.两圆的内(外)公切线的长相等。 13.等于同一线段的两条线段相等。 二、证明两个角相等

1.两全等三

离散数学作业1 - 集合与关系答案

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

离散数学作业1_集合与关系

1. 设A、B、C为任意三个集合,判断下列命题的真与假。如命题为真,则证明之;否则,举反例说明。 (1)若A?C=B?C,则A=B(假命题) (2)若A?C=B?C ,则A=B(假命题) (3)若A?C=B?C 且A?C=B?C ,则A=B (真命题,参考ppt 1.2节例8) 2.证明A-B=A∩~B.

证明思路:任取x∈A-B?……? x∈A∩~B

证明:任取x∈A-B?x∈A且x/∈B(根据相对补的定义)

? x∈A且x∈~B(根据绝对补的定义) ? x∈A∩~B

3. 设A={1,2,3,4,5,6},下面各式定义的R都是A上的二元关系。试分别以序偶、关系矩阵、关系图三种形式分别写出R。 (1) R={|x整除y};(2) R={|x是y的倍数}; (3) R={|(x-y)2?A};(4) R={|x/ y是素数}。 解: (1)

R={<1,1>,<1,2>,<1,3>,<1,4>,<1,5>,<1,6>,<2,2>,<2,4.>,<2,6>,<3,3>,<3,6>,<4,4>,<5,5>,<6,6>} (2)

R={<1,1>,<2,1>,<2,2>,<3,1>,<3,3>,<4,1>,<4,2>,<4,4>,<5,1>,

>,<6,1>,<6,2>,<6,3>,<6,6>} (3)

R={<1,2>,<1,3>,<2,1>,<2,3>,<2,4>,<3,2>,<3,4>,<3,1>,<3,5>,<4,3>,<4,5>,<4,2>,<4,6>,<5,4>,<5,6>,<5,3>,<6,5>,<6,4>}

(4) 质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。

100以内的质数有2,3,5,7,11,13

离散数学作业题

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

离散数学作业题

第2章 集合、关系与映射

P133 习题三:7、9、11、17 1. A?B,A∈B能否同时成立,说明原因 求集合A={a,{a}}的幂集 2. 证明:若B?C,则P(B)? P(C) 3. 如果A∪B=A∪C,是否有B=C? 如果A⊕B=A⊕C,是否有B=C?

4. 试求1到10000之间不能被4,5或6整除的整数个数.

5. 列出所有从A={a,b,c}到B={s}的关系,并指出集合A上的恒等关系和从A到B的全域关系.

6. 给出A上的关系及其关系图和矩阵表示.{|0≤x-y<3} A={0,1,2,3,4}

7. 已知S={a,b}. R? ={〈x,y〉|x,y∈A∧x?y∧A为集合族ρ(S)}.试写出关系R?. 8. 已知: A={a,b,c}, R={〈a,b〉,〈a,c〉,〈b,c〉}该关系具有什么性质? (自反,反自反,对称,反对称,传递性)

9. 设A={a,b,c},R={〈a,b〉,〈a,c〉} 计算:r(R),sr(R),tr(R),str(R). 10. 设A是含有4个元素的集合,试求: (1)在A上可以定义多少种对称关系?

(2)在A上可