一线三角模型例题及答案

“一线三角模型例题及答案”相关的资料有哪些?“一线三角模型例题及答案”相关的范文有哪些?怎么写?下面是小编为您精心整理的“一线三角模型例题及答案”相关范文大全或资料大全,欢迎大家分享。

一线三角模型及例题

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

相似三角形判定的复习: 1.相似三角形的预备定理:

平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。 2.相似三角形的判定定理:

(1)两角对应相等两三角形相似。 (2)两边对应成比例且夹角相等,两个三角形相似。 (3)三边对应成比例,两个三角形相似。 3.直角三角形相似的判定定理:

(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。

(2)一直角三角形的斜边和一条直角边与另一直角三角形的斜边和一条直角边对应成比例,那么这两三角形相似。

相似三角形的性质:

要点1:相似三角形的性质:相似三角形的对应角相等,对应边成比例 要点2:相似三角形的性质定理:

相似三角形的性质定理1:相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比 相似三角形的性质定理2:相似三角形的周长的比等于相似比 相似三角形的性质定理3:相似三角形的面积的比等于相似比的平方

要点3:知识架构图

对应角相等、对应边成比例 对应高之比、对应中线之比、对应角平分线之比都等于相似比. 周长之比等于相似比 面积之比等于相似比的平方 相似三角形的性质 1、如图,锐角?ABC的高CD和BE相交于点O,图中相似三

一线三角模型及例题

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

相似三角形判定的复习: 1.相似三角形的预备定理:

平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。 2.相似三角形的判定定理:

(1)两角对应相等两三角形相似。 (2)两边对应成比例且夹角相等,两个三角形相似。 (3)三边对应成比例,两个三角形相似。 3.直角三角形相似的判定定理:

(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。

(2)一直角三角形的斜边和一条直角边与另一直角三角形的斜边和一条直角边对应成比例,那么这两三角形相似。

相似三角形的性质:

要点1:相似三角形的性质:相似三角形的对应角相等,对应边成比例 要点2:相似三角形的性质定理:

相似三角形的性质定理1:相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比 相似三角形的性质定理2:相似三角形的周长的比等于相似比 相似三角形的性质定理3:相似三角形的面积的比等于相似比的平方

要点3:知识架构图

对应角相等、对应边成比例 对应高之比、对应中线之比、对应角平分线之比都等于相似比. 周长之比等于相似比 面积之比等于相似比的平方 相似三角形的性质 1、如图,锐角?ABC的高CD和BE相交于点O,图中相似三

专题:全等三角形常见辅助线做法及典型例题

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

《全等三角形》辅助线做法总结

图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。

一、截长补短法(和,差,倍,分)

截长法:在长线段上截取与两条线段中的一条相等的一段,证明剩余的线段与另一段相 等(截取----全等----等量代换)

补短法:延长其中一短线段使之与长线段相等,再证明延长段与另一短线段相等(延长 ----全等----等量代换)

例如:1,已知,如图,在△ABC中,∠C=2∠B,∠1=∠2。求证:AB=AC+CD。 2,已知:如图,AC∥BD,AE和BE分别平分∠CAB和∠DBA,CD过点E. 求证:(1)AE⊥BE; (2)AB=AC+BD.

二、图中含有已知线段的两个图形显然不全等(或图形不完整)时,添加公共边(或一其中 一个图形为基础,添加线段)构建图形。

林初中2017届中考数学压轴题专项汇编:专题17一线三等角模型(附答案)

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

专题17 一线三等角模型

破解策略

在直线AB 上有一点P ,以A ,B ,P 为顶点的∠1,∠2,∠3相等,∠1,∠2的一条边在直线AB 上,另一条边在AB 同侧,∠3两边所在的直线分别交∠1,∠2非公共边所在的直线于点C ,D .

1.当点P 在线段AB 上,且∠3两边在AB 同侧时.

(1)如图,若∠1为直角,则有△ACP ∽△BP D .

321

D

B

P A C

(2)如图,若∠1为锐角,则有△ACP ∽△BP D .

3

C

D

B

P A

证明:∵∠DPB =180°-∠3-∠CP A ,∠C =180°-∠1-∠CP A ,而∠1=∠3 ∴∠C =∠DPB ,

∵∠1=∠2,∴△ACP ∽△BPD

(3)如图,若∠1为钝角,则有△ACP ∽△BP D .

231

D

B P A C

2.当点P 在AB 或BA 的延长线上,且∠3两边在AB 同侧时.

如图,则有△ACP ∽△BP D .

3

2

1C

P D

B A

证明:∵∠DPB =180°-∠3-∠CP A ,∠C =180°-∠1-∠CP A ,而∠1=∠3

∴∠C =∠DPB ,

∵∠1=∠2=∠PBD ,∴△ACP ∽△BPD

3.当点P 在AB 或BA 的延长线上,且∠3两边在AB

第二讲 三角形的角及倒角模型

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

第二讲 三角形的角及倒角模型

1、 如图1,求证:AB+AE>BC+CD+DE

2、 如图2,AC、BD是四边形ABCD的对角线,且AC、BD相交于点O,求证:AC+BD>(AB

+BC+CD+AD)。

12

3、 如图3,⊿ADE和⊿ABC中,∠EAD=∠AED=∠BAC=∠BCA=45°又有∠BAD=∠BCF, (1) 求∠ECF+∠DAC+∠ECA的度数;

(2) 判断ED与FC的位置关系,并对你的结论加以证明。

4、 求∠a的度数。 5、如图5,∠A=30°,求∠B+∠C+∠D+∠E的度数。

6、将图6-1中线段AD上一点E(点A、D除外)向下拖动,依次可得图6-2、图6-3、图6-4,分别探究图6-2、图6-3、图6-4中∠A、∠B、∠C、∠D、∠E(∠AED)之间有什么关系?

7、如图7,在⊿ABC中D是BC上任意一点,E是AD上任意一点,试说明:AB+AC>BE+EC。

8、如图8,已知DM平分∠ADC,BM平分∠ABC,且∠A=27°,∠M=33°,则∠C= 。

9、如图9所示,点E和点D分别在⊿ABC的边BA和CA的延长线上,CF、EF分别平分∠ACB和∠AED,试探索∠F与∠B,∠D的关系

高考数学三角函数典型例题

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

三角函数典型例题

1 .设锐角?ABC的内角A,B,C的对边分别为a,b,c,a?2bsinA.

(Ⅰ)求B的大小;

(Ⅱ)求cosA?sinC的取值范围.

2 .在?ABC中,角A. B.C的对边分别为a、b、c,且满足(2a-c)cosB=bcos C.

(Ⅰ)求角B的大小;

?????? (Ⅱ)设m??sinA,cos2A?,n??4k,1??k?1?,且m?n的最大值是5,求k的值.

3 .在?ABC中,角A,B,C所对的边分别为a,b,c,sinA?B2?sinC2?2.

I.试判断△ABC的形状;

II.若△ABC的周长为16,求面积的最大值.

4 .在?ABC中,a、b、c分别是角A. B.C的对边,C=2A,cosA?34,

(1)求cosC,cosB的值; (2)若BA?BC?272,求边AC的长?

5 .已知在?ABC中,A?B,且tanA与tanB是方程x2?5x?6?0的两个根.

(Ⅰ)求tan(A?B)的值; (Ⅱ)若AB?5,求BC的长.

6 .在?ABC中,已知内角

A. B.C所对的边分别为m???2sBin?,?,n??3?B?cos2B,2cos2?1?m?//n??,且?

?2?(I)求锐角B的大小;

高考数学三角函数典型例题

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

三角函数典型例题

1 .设锐角?ABC的内角A,B,C的对边分别为a,b,c,a?2bsinA.

(Ⅰ)求B的大小;

(Ⅱ)求cosA?sinC的取值范围.

2 .在?ABC中,角A. B.C的对边分别为a、b、c,且满足(2a-c)cosB=bcos C.

(Ⅰ)求角B的大小;

?????? (Ⅱ)设m??sinA,cos2A?,n??4k,1??k?1?,且m?n的最大值是5,求k的值.

3 .在?ABC中,角A,B,C所对的边分别为a,b,c,sinA?B2?sinC2?2.

I.试判断△ABC的形状;

II.若△ABC的周长为16,求面积的最大值.

4 .在?ABC中,a、b、c分别是角A. B.C的对边,C=2A,cosA?34,

(1)求cosC,cosB的值; (2)若BA?BC?272,求边AC的长?

5 .已知在?ABC中,A?B,且tanA与tanB是方程x2?5x?6?0的两个根.

(Ⅰ)求tan(A?B)的值; (Ⅱ)若AB?5,求BC的长.

6 .在?ABC中,已知内角

A. B.C所对的边分别为m???2sBin?,?,n??3?B?cos2B,2cos2?1?m?//n??,且?

?2?(I)求锐角B的大小;

全等三角形典型例题

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

【典型例题】 例1. (2008年陕西)已知:如图,B、C、E三点在同一直线上,AC∥DE,AC=CE,∠ACD=∠B.求证:△ABC≌△CDE. 分析:已知条件中具备AC=CE,要证明两个三角形全等,需要推证其它的对应边、对应角相等,而由AC∥DE得∠E=∠ACB,∠D=∠ACD,又因为∠ACD=∠B,所以∠D=∠B.得到两个三角形全等的条件。 解:∵AC∥DE,∴∠ACD=∠D,∠BCA=∠E. 又∵∠ACD=∠B,∴∠B=∠D. 在△ABC和△CDE中,,∴△ABC≌△CDE. 评析:从已知条件入手寻找三角形全等的条件,灵活运用平行线的性质推导∠D=∠ACD,∠E=∠ACE.解题关键是利用平行线的性质获得三角形全等的条件。 例2. (2008年浙江衢州)如图,AB∥CD (1)用直尺和圆规作∠C的平分线CP,CP交AB于点E(保留作图痕迹,不写作法); (2)在(1)中作出的线段CE上取一点F,连结AF.要使△ACF≌△AEF,还需要添加一个什么条件?请你写出这个条件(只要给出一种情况即可;图中不再增加字母和线段;不要求证明). 分析:根据角平分线的作法,分三步得到∠C的平分线.对于补充条件使△ACF

高考数学解三角形典型例题答案

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

高考数学解三角形典型例题答案(一)

1 .设锐角ABC ?的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;

(Ⅱ)求cos sin A C +的取值范围.

【解析】:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC ?为锐角三角形得π6

B =. (Ⅱ)cos sin cos sin A

C A A π?

?+=+π-

- ?6?? cos sin 6A A π??=++ ???

1cos cos 2A A A =++

3A π??=+ ??

?. 2 .在ABC ?中,角A . B .C 的对边分别为a 、b 、c,且满足(2a-c)cosB=bcos C .

(Ⅰ)求角B 的大小;

(Ⅱ)设()()()2411m sin A,cos A ,n k,k ,==>且m n ?的最大值是5,求k 的值.

【解析】:(I)∵(2a -c )cos B =b cos C , ∴(2sin A -sin C )cos B =sin B cos C .

即2sin A cos B =sin B cos C +sin C cos B

=sin(B +C )

一线主管

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】