数学建模的基本方法
“数学建模的基本方法”相关的资料有哪些?“数学建模的基本方法”相关的范文有哪些?怎么写?下面是小编为您精心整理的“数学建模的基本方法”相关范文大全或资料大全,欢迎大家分享。
数学建模论文基本格式
关于数学建模论文的写作天津大学数学建模
天津大学《数学建模》论文基本格式
?以下内容为天津大学数学建模要求上交的论文基本格式:
第一部分:摘要(200-300字,包括模型的内容概括、建模方法和主要结果。) 第二部分:关键词(求解问题、使用的方法中的重要术语3-5个)
第三部分:建模问题分析与解答(主题内容)其中包括:
(1)问题重述
(2)问题背景与问题分析
(3)模型假设与符号约定
(4)模型建立(问题分析,公式推导,基本模型,最终或简化模型等)与求解(包括设计或选择合适的计算方法和算法,设计算法的实现步骤和计算框图;所采用的软件名称;引用或建立必要的数学命题和定理;求解方案及流程) (5)进一步讨论
(6)模型检验
(7)模型优缺点
(8)参考文献
(9)附录
?下为本次作业论文所要求的格式:
●封面写在第一页,其中包括,论文题目(用三号黑体),小组组长姓名,学
号,以及组员姓名和学号(黑体,小三,居中,内容要居中)。
●第二页上面附上本论文的目录。
第 1 页共5 页
关于数学建模论文的写作天津大学数学建模●论文题目和摘要写在论文第三页上,从第四页开始是论文正文。
●论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从
“1”开始连续编号。
●论文题目用三号黑
数学建模方法大汇总
数学建模的绝大部分的方法,简单的介绍和分析,避免你到处找方法!做学术论文等都可以用到的!
目录
一、主成分分析法 ....................................................................................................... 2 二、因子分析法............................................................................................................ 5 三、聚类分析 .............................................................................................................. 9 四、最小二乘法与多项式拟合 ................................................................................. 16 五、回归分析(略) .....................
数学建模方法大汇总
目录
一、主成分分析法 ....................................................................................................... 2 二、因子分析法............................................................................................................ 5 三、聚类分析 .............................................................................................................. 9 四、最小二乘法与多项式拟合 ................................................................................. 16 五、回归分析(略) ................................................................
评价方法在数学建模中的应用
大连大学数学建模工作室培训AHP讲义,女友亲自作的哦!
评价方法在数学建模中的应用 评价方法在数学建模中的应用
数学建模工作室 2010年 2010年4月14日 14日
大连大学数学建模工作室培训AHP讲义,女友亲自作的哦!
评价是指根据明确的系统目标、 评价是指根据明确的系统目标、结构及系 统的属性, 统的属性,用有效的标准测定出系统的性 质和状态, 质和状态,然后与一定的评价准则相比较 并做出判断。 并做出判断。目前国内外使用的评价模型 和方法很多,如专家评价方法、 和方法很多,如专家评价方法、经济分析 法、数学模型评价方法和混合方法等。 数学模型评价方法和混合方法等。
大连大学数学建模工作室培训AHP讲义,女友亲自作的哦!
什么是决策问题? 什么是决策问题?报考学校 挑选专业 选择工作岗位
大连大学数学建模工作室培训AHP讲义,女友亲自作的哦!
评价方法的分类层次分析模型(AHP模型) 层次分析模型(AHP模型) 模型数据包络模型(DEA模型) 数据包络模型(DEA模型) 模型 模糊综合评价方法 …
大连大学数学建模工作室培训AHP讲义,女友亲自作的哦!
层次分析模型 基本概述 模型建立的基本步骤 实例 模型的主要应用范围举例 模型的优缺
数学建模解题方法与步骤
石家庄经济学院 信息工程学院 1 数学建模与创业计划实践部
学习目标
1.能表述建立数学模型的方法、步骤;
2.能表述建立数学模型的逼真性、可行性、渐进性、强健性、可转移性、非预制性、条理性、技艺性和局限性等特点;; 3.能表述数学建模的分类;
4.会采用灵活的表述方法建立数学模型; 5.培养建模的想象力和洞察力。 一、建立数学模型的方法和步骤
—般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义.测试分折将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,可以测量系统的输人输出数据、并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个与数据拟合得最好的模型。这种方法称为系统辨识(System
Identification).将这两种方法结合起来也是常用的建模方法。即用机理分析建立模型的结构,用系统辨识确定模型的参数.
可以看出,用上面的哪一类方法建模主要是根据我们对研究对象的了解程度和建模目的决定的.如果掌握了机理方面的一定知识,模型也要求具
数学建模综合评价方法(定)
所谓指标就是用来评价系统的参量.例如,在校学生规模、教学质量、师资结构、科研水平等,就可以作为评价高等院校综合水平的主要指标.一般说来,任何—个指标都反映和刻画事物的—个侧面.
从指标值的特征看,指标可以分为定性指标和定量指标.定性指标是用定性的语言作为指标描述值,定量指标是用具体数据作为指标值.例如,旅游景区质量等级有5A、4A、3A、2A和1A之分,则旅游景区质量等级是定性指标;而景区年旅客接待量、门票收入等就是定量指标.
从指标值的变化对评价目的的影响来看,可以将指标分为以下四类: (1)极大型指标(又称为效益型指标)是指标值越大越好的指标; (2)极小型指标(又称为成本型指标)是指标值越小越好的指标;
(3)居中型指标是指标值既不是越大越好,也不是越小越好,而是适中为最好的指标; (4) 区间型指标是指标值取在某个区间内为最好的指标.
例如,在评价企业的经济效益时,利润作为指标,其值越大,经济效益就越好,这就是效益型指标;而管理费用作为指标,其值越小,经济效益就越好,所以管理费用是成本型指标.再如建筑工程招标中,投标报价既不能太高又不能太低,其值的变化范围一般是(?10%,?5%)×标的价,超过此范围的都将被淘汰,因此投标报价为区间型
数学建模中的综合评价方法
综合评价
评价是人类社会中一项经常性的、极重要的认识活动,是决策中的基础性工作。在实际问题的解决过程中,经常遇到有关综合评价问题,如医疗质量的综合评价问题和环境质量的综合评价等。它是根据一个复杂系统同时受到多种因素影响的特点,在综合考察多个有关因素时,依据多个有关指标对复杂系统进行总评价的方法;综合评价的要点:(1)有多个评价指标,这些指标是可测量的或可量化的;(2)有一个或多个评价对象,这些对象可以是人、单位、方案、标书科研成果等;(3)根据多指标信息计算一个综合指标,把多维空间问题简化为一维空间问题中解决,可以依据综合指标值大小对评价对象优劣程度进行排序。
综合评价的一般步骤
1.根据评价目的选择恰当的评价指标,这些指标具有很好的代表性、区别性强,而且往往可以测量,筛选评价指标主要依据专业知识,即根据有关的专业理论和实践,来分析各评价指标对结果的影响,挑选那些代表性、确定性好,有一定区别能力又互相独立的指标组成评价指标体系。
2.根据评价目的,确定诸评价指标在对某事物评价中的相对重要性,或各指标的权重; 3.合理确定各单个指标的评价等级及其界限;
4.根据评价目的,数据特征,选择适当的综合评价方法,并根据已掌握的历史资料,建立综
数学建模中常用的思想、方法和软件
数学建模中常用的思想和方法
在数学建模中常用的方法:类比法、二分法、量纲分析法、差分法、变分法、图论法、层次分析法、数据拟合法、回归分析法、数学规划(线性规划,非线性规划,整数规划,动态规划,目标规划)、机理分析、排队方法、对策方法、决策方法、模糊评判方法、时间序列方法、灰色理论方法、现代优化算法(禁忌搜索算法,模拟退火算法,遗传算法,神经网络)。 用这些方法可以解下列一些模型:优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型。
拟合与插值方法(给出一批数据点,确定满足特定要求的曲线或者曲面,从而反映对象整体的变化趋势): matlab可以实现一元函数,包括多项式和非线性函数的拟合以及多元函数的拟合,即回归分析,从而确定函数; 同时也可以用matlab实现分段线性、多项式、样条以及多维插值。
在优化方法中,决策变量、目标函数(尽量简单、光滑)、约束条件、求解方法是四个关键因素。其中包括无约束规则(用fminserch、fminbnd实现)线性规则(用linprog实现)非线性规则、( 用fmincon实现)多目标规划(有目标加权、效用函数)动态规划(倒向和正向)整数规划。
回归分析:对具有相关关系的现象,根据其关系形态,选择一
数学建模 插值与拟合方法
插值与拟合方法
数学建模社团活动
主讲人:赵振刚
第一章 插值与拟合方法一般插值方法; 样条函数与样条插值方法; 磨光法与B样条函数; 最小二乘拟合方法; 应用案例分析与应用练习.
2
2013年11月24日
一、一般插值方法1.一般问题的提出实际中不知道函数 y f (x) 的具体表达式, 由实验 测量对于 x xi 有值 y yi (i 0,1,2, , n) ,寻求另一 函数 (x) 使满足: ( x i ) yi f ( xi ) 。此问题称为插值问题, 并称 (x) 为 f (x) 的插值 函数; x 0 , x1 , x2 , , xn 称为插值节点;
( x i ) yi (i 0,1,2, , n) 称 为 插 值 条 件 , 即 ( x i ) yi f ( xi ) ,且 ( x) f ( x) 。3 2013年11月24日
一、一般插值方法2. Lagrange插值公式设函数 y f (x) 在 n 1 个相异点 x 0 , x1 , x2 , , xn 上的值为 y 0 , y1 , y 2 , , yn ,要求一个次数
数学建模常用方法MATLAB求解(好)
数学建模中运用matlab的具体方法。
数学建模竞赛
数学建模中运用matlab的具体方法。
几种常见的数学方法及软件求解一、曲线拟合及MATLAB软件求解 已知离散点上的数据集 [( x1 , y1 )( x2 , y2 ) ( xn , yn )],
求得一解析函数y=f(x)使y=f(x)在原离散点 xi 上尽可能 接近给定 yi 的值,这一过程叫曲线拟合。最常用的 曲线拟合是最小二乘法曲线拟合,拟合结果可使误差的 平方和最小,即找出使
i 1
n
f ( xi ) yi
2
最小的f(x).
数学建模中运用matlab的具体方法。
格式:p=polyfit(x,y,n). 说明:求出已知数据x,y 的n次拟合多项式f(x)的系 数p,x 必须是单调的。 例1 已知某函数的离散值如表xi yi 0.5 1.75 1.0 2.45 1.5 3.81 2.0 4.80 2.5 7.00 3.0 8.65
求二次拟合多项式. 先画函数离散点的图形 输入命令 : >> x=[0.5 1.0 1.5 2.0 2.5 3.0]; >> y=[1.75 2.45 3.81 4.80 7.00 8.60]; >> scatter(x,y,5) 结果见图3