高考数学解析几何知识点归纳总结
“高考数学解析几何知识点归纳总结”相关的资料有哪些?“高考数学解析几何知识点归纳总结”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高考数学解析几何知识点归纳总结”相关范文大全或资料大全,欢迎大家分享。
《解析几何》知识点
x2y2y2x21、椭圆标准方程的两种形式是:2?2?1和2?2?1(a?b?0)。
ababx2y2a20),准线方程是x??2、椭圆2?2?1(a?b?0)的焦点坐标是(?c,,
cabc2b2222离心率是e?,通径的长是。其中c?a?b。
aax2y23、若点P(x0,y0)是椭圆2?2?1(a?b?0)上一点,F1、F2是其左、右焦点,
ab则点P的焦半径的长是PF1?a?ex0和PF2?a?ex0。
x2y2y2x24、双曲线标准方程的两种形式是:2?2?1和2?2?1(a?0,b?0)。
ababcx2y2a25、双曲线2?2?1的焦点坐标是(?c,准线方程是x??,离心率是e?,0),
acab2b2x2y2222通径的长是,渐近线方程是2?2?0。其中c?a?b。
aabx2y2x2y26、与双曲线2?2?1共渐近线的双曲线系方程是2?2??(??0)。与双曲
ababx2y2x2y2?2?1。 线2?2?1共焦点的双曲线系方程是2a?kb?kab7、若直线y?kx?b与圆锥曲线交于两点A(x1,y1),B(x2,y2),则弦长为
AB?(1?k2)(x1?x2)2;
若直线x?my?t与圆锥曲线交于两点A(x1,y1
高中数学解析几何知识点答题总结
高中数学解析几何知识点答题总结
第一部分:直线
一、直线的倾斜角与斜率
1.倾斜角α
(1)定义:直线l向上的方向与x轴正向所成的角叫做直线的倾斜角。 (2)范围:0????180?
2.斜率:直线倾斜角α的正切值叫做这条直线的斜率.
? k?tan(1).倾斜角为90?的直线没有斜率。 (2).每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率(直线垂直于x轴时,其斜率不存在),这就决定了我们在研究直线的有关问题时,应考虑到斜率的存在与不存在这两种情况,否则会产生漏解。
(3)设经过A(x1,y1)和B(x2,y2)两点的直线的斜率为k, 则当x1?x2时,k?tan??y1?y2o;当x1?x2时,??90;斜率不存在;
x1?x2二、直线的方程
1.点斜式:已知直线上一点P(x0,y0)及直线的斜率k(倾斜角α)求直线的方程用点斜式:y-y0=k(x-x0) 注意:当直线斜率不存在时,不能用点斜式表示,此时方程为x?x0;
2.斜截式:若已知直线在y轴上的截距(直线与y轴焦点的纵坐标)为b,斜率为k,则直线方程:y?kx?b;特别地,斜率存在且经过坐标原点的直线方程为:y?kx 注意:正确理解“截距”这一概念
必修2平面解析几何知识点总结与训练
苏教版必修2
第2章 平面解析几何
1.直线的倾斜角与斜率:
(1)直线的倾斜角:在平面直角坐标系中,对于一条与x轴相交的直线,如果把x轴绕着交点按逆时针
方向旋转到和直线重合时所转的最小正角记为?叫做直线的倾斜角. 倾斜角??[0,180?),??90?斜率不存在. (2)直线的斜率:k?y2?y1x2?x1(x1?x2),k?tan?.(P1(x1,y1)、P2(x2,y2)).
2.直线方程的五种形式:
(1)点斜式:y?y1?k(x?x1) (直线l过点P1(x1,y1),且斜率为k).
注:当直线斜率不存在时,不能用点斜式表示,此时方程为x?x0. (2)斜截式:y?kx?b (b为直线l在y轴上的截距). (3)两点式:
y?y1y2?y1?x?x1x2?x1 (y1?y2,x1?x2).
注:① 不能表示与x轴和y轴垂直的直线;
② 方程形式为:(x2?x1)(y?y1)?(y2?y1)(x?x1)?0时,方程可以表示任意直线.
(4)截距式:
xa?yb?1 (a,b分别为x轴y轴上的截距,且a?0,b?0).
注:不能表示与x轴垂直的直线,也不能表示与y轴垂直的直线,特别是不能表示过原点的直线.
(5)一般式:
高考数学解析几何知识点总结【更多资料关注@高中学习资料库 】
www.gaokaoq.com高考圈-让高考没有难报的志愿
高中数学解析几何知识点大总结
第一部分:直线
一、直线的倾斜角与斜率 1.倾斜角α
(1)定义:直线l向上的方向与x轴正向所成的角叫做直线的倾斜角。 (2)范围:0????180?
2.斜率:直线倾斜角α的正切值叫做这条直线的斜率.
k?tan?
(1).倾斜角为90?的直线没有斜率。 (2).每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率(直线垂直于x轴时,其斜率不存在),这就决定了我们在研究直线的有关问题时,应考虑到斜率的存在与不存在这两种情况,否则会产生漏解。
(3)设经过A(x1,y1)和B(x2,y2)两点的直线的斜率为k, 则当x1?x2时,k?tan??y1?y2o;当x1?x2时,??90;斜率不存在;
x1?x2二、直线的方程
1.点斜式:已知直线上一点P(x0,y0)及直线的斜率k(倾斜角α)求直线的方程用点斜式:y-y0=k(x-x0) 注意:当直线斜率不存在时,不能用点斜式表示,此时方程为x?x0;
2.斜截式:若已知直线在y轴上的截距(直线与y轴焦点的纵坐标)为b,斜率为k,则直线方程:y?kx?b;特别地,斜率存在且经过坐标原
高考数学解析几何知识点总结【更多资料关注@高中学习资料库 】
www.gaokaoq.com高考圈-让高考没有难报的志愿
高中数学解析几何知识点大总结
第一部分:直线
一、直线的倾斜角与斜率 1.倾斜角α
(1)定义:直线l向上的方向与x轴正向所成的角叫做直线的倾斜角。 (2)范围:0????180?
2.斜率:直线倾斜角α的正切值叫做这条直线的斜率.
k?tan?
(1).倾斜角为90?的直线没有斜率。 (2).每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率(直线垂直于x轴时,其斜率不存在),这就决定了我们在研究直线的有关问题时,应考虑到斜率的存在与不存在这两种情况,否则会产生漏解。
(3)设经过A(x1,y1)和B(x2,y2)两点的直线的斜率为k, 则当x1?x2时,k?tan??y1?y2o;当x1?x2时,??90;斜率不存在;
x1?x2二、直线的方程
1.点斜式:已知直线上一点P(x0,y0)及直线的斜率k(倾斜角α)求直线的方程用点斜式:y-y0=k(x-x0) 注意:当直线斜率不存在时,不能用点斜式表示,此时方程为x?x0;
2.斜截式:若已知直线在y轴上的截距(直线与y轴焦点的纵坐标)为b,斜率为k,则直线方程:y?kx?b;特别地,斜率存在且经过坐标原
高考数学解析几何知识点总结【更多资料关注@高中学习资料库 】
www.gaokaoq.com高考圈-让高考没有难报的志愿
高中数学解析几何知识点大总结
第一部分:直线
一、直线的倾斜角与斜率 1.倾斜角α
(1)定义:直线l向上的方向与x轴正向所成的角叫做直线的倾斜角。 (2)范围:0????180?
2.斜率:直线倾斜角α的正切值叫做这条直线的斜率.
k?tan?
(1).倾斜角为90?的直线没有斜率。 (2).每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率(直线垂直于x轴时,其斜率不存在),这就决定了我们在研究直线的有关问题时,应考虑到斜率的存在与不存在这两种情况,否则会产生漏解。
(3)设经过A(x1,y1)和B(x2,y2)两点的直线的斜率为k, 则当x1?x2时,k?tan??y1?y2o;当x1?x2时,??90;斜率不存在;
x1?x2二、直线的方程
1.点斜式:已知直线上一点P(x0,y0)及直线的斜率k(倾斜角α)求直线的方程用点斜式:y-y0=k(x-x0) 注意:当直线斜率不存在时,不能用点斜式表示,此时方程为x?x0;
2.斜截式:若已知直线在y轴上的截距(直线与y轴焦点的纵坐标)为b,斜率为k,则直线方程:y?kx?b;特别地,斜率存在且经过坐标原
高考数学解析几何知识点总结【更多资料关注@高中学习资料库 】
www.gaokaoq.com高考圈-让高考没有难报的志愿
高中数学解析几何知识点大总结
第一部分:直线
一、直线的倾斜角与斜率 1.倾斜角α
(1)定义:直线l向上的方向与x轴正向所成的角叫做直线的倾斜角。 (2)范围:0????180?
2.斜率:直线倾斜角α的正切值叫做这条直线的斜率.
k?tan?
(1).倾斜角为90?的直线没有斜率。 (2).每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率(直线垂直于x轴时,其斜率不存在),这就决定了我们在研究直线的有关问题时,应考虑到斜率的存在与不存在这两种情况,否则会产生漏解。
(3)设经过A(x1,y1)和B(x2,y2)两点的直线的斜率为k, 则当x1?x2时,k?tan??y1?y2o;当x1?x2时,??90;斜率不存在;
x1?x2二、直线的方程
1.点斜式:已知直线上一点P(x0,y0)及直线的斜率k(倾斜角α)求直线的方程用点斜式:y-y0=k(x-x0) 注意:当直线斜率不存在时,不能用点斜式表示,此时方程为x?x0;
2.斜截式:若已知直线在y轴上的截距(直线与y轴焦点的纵坐标)为b,斜率为k,则直线方程:y?kx?b;特别地,斜率存在且经过坐标原
2010-2011高考文科数学解析几何总结
【2010年山东卷】
2x2y22),离心率为(22)(本小题满分14分)如图,已知椭圆2?2?1 (a?b?0)过点.(1,,左、右焦点分别22ab为F1、F2.点P为直线l:x?y?2上且不在x轴上的任意一点,直线PF1和PF2与椭圆的交点分别为A、B和C、
D,O为坐标原点.
(I)求椭圆的标准方程;
(II)设直线PF1、PF2的斜线分别为k1、k2. (i)证明:
13??2; k1k2(ii)问直线l上是否存在点P,使得直线OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD满足
kOA?kOB?kOC?k
OD?0?若存在,求出所有满足条件的点P的坐标;若不存在,说明理由.
【2011年山东卷】
4.曲线y?x?11在点P(1,12)处的切线与y轴交点的纵坐标是 (A)-9 (B)-3 (C)9 (D)15
29.设M(x0,y0)为抛物线C:x?8y上一点,F为抛物线C的焦点,以F为圆心、FM为半径的圆和抛物线C的
2准线相交,则y0的取值范围是
(A)(0,2) (B)[0,2] (C)(2,+∞) (D)[2,+∞)
x2y2x2y2?=1有相同的焦点,且双
空间向量与立体几何知识点归纳总结
一对一授课教案
学员姓名: 年级: 所授科目:
上课时间: 年 月 日 时 分至 时 分共 小时
老师签名 教学主题 上次作业检查 本次上课表现 本次作业 空间向量与立体几何 学生签名
一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)向量具有平移不变性 2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
????运算律:⑴加法交换律:a?b?b?a
??????⑵加法结合律:(a?b)?c?a?(b?c)
????⑶数乘分配律:?(a?b)??a??b
? ????????????????????????????????OB?OA?AB?a?b;BA?OA?OB?a?b;OP??a(??R)
???b,记作a//b。
运算法则:三角形法则、平行四边形法则、平行六面体法则 3
空间几何体知识点归纳
第一章空间几何体
1.1柱、锥、台、球的结构特征
(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱'
'
'
'
'E
D
C
B
A
ABCDE-或用对角线的端点字母,如五棱柱'
AD
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥
定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体
分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等
表示:用各顶点字母,如五棱锥'
'
'
'
'E
D
C
B
A
P-
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分
分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等
表示:用各顶点字母,如五棱台'
'
'
'
'E
D
C
B
A
P-
几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点
(4)圆柱:定义:以矩形的一