初中数学二次函数压轴题解题技巧
“初中数学二次函数压轴题解题技巧”相关的资料有哪些?“初中数学二次函数压轴题解题技巧”相关的范文有哪些?怎么写?下面是小编为您精心整理的“初中数学二次函数压轴题解题技巧”相关范文大全或资料大全,欢迎大家分享。
二次函数典型题解题技巧
二次函数典型题解题技巧
(一)有关角
21、已知抛物线y?ax?bx?c的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,3),过点C作x轴的平行线与抛物线交于点D,抛物线的顶点为M,直线
y?x?5经过D、M两点.
(1) 求此抛物线的解析式;
(2)连接AM、AC、BC,试比较?MAB和?ACB的大小,并说明你的理由.
思路点拨:对于第(1)问,需要注意的是CD和x轴平行(过点C作x轴的平行线与抛物线交于点D)
对于第(2)问,比较角的大小
a、 如果是特殊角,也就是我们能分别计算出这两个角的大小,那么他们之间的大小关系就
清楚了
b、 如果这两个角可以转化成某个三角形的一个外角和一个不相邻的内角,那么大小关系就
确定了
c、 如果稍难一点,这两个角转化成某个三角形的两个内角,根据大边对大角来判断角的大
小
d、 除了上述情况外,那只有可能两个角相等,那么证明角相等的方法我们学过什么呢,全
等三角形、相似三角形和简单三角函数,从这个题来看,很明显没有全等三角形,剩下的就是相似三角形和简单三角函数了,其实简单三角函数证明角相等和相似三角形证明角相等的本质是一样的,都是对应边的比相等
e、 可能还有人会问,这么想我不习惯,太复杂了,
二次函数压轴题解题思路
二次函数压轴题解题思路
一、基本知识 1会求解析式
2.会利用函数性质和图像
3.相关知识:如一次函数、反比例函数、点的坐标、方程。图形中的三角形、四边形、圆及平行线、垂直。一些方法:如相似、三角函数、解方程。一些转换:如轴对称、平移、旋转。 二、典型例题: (一)、求解析式
1.(2014莱芜)过A(1,0)、B(3,0)作x轴的垂线,分别交直线y=4﹣x于C、D两点.抛物线y=ax2+bx+c经过O、C、D三点.(1)求抛物线的表达式; 2.(2012莱芜)顶点坐标为(2,﹣1)的抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点.(1)求抛物线的表达式;
练习:(2014兰州)把抛物线y=﹣2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为( )Ay=﹣2(x+1)2+2By=﹣2(x+1)2﹣2Cy=﹣2(x﹣1)2+2Dy=﹣2(x﹣1)2﹣2 (二)、二次函数的相关应用 第一类:面积问题
例题.(2012莱芜)如图,顶点坐标为(2,﹣1)的抛物线y=ax2+bx+c(a≠0)与y
轴交于点C(0,3),与x轴交于A、B两点.
(1)求抛物线的表达式;(抛物线的解析式:y=(x
二次函数压轴题解题思路
二次函数压轴题解题思路
一、基本知识 1会求解析式
2.会利用函数性质和图像
3.相关知识:如一次函数、反比例函数、点的坐标、方程。图形中的三角形、四边形、圆及平行线、垂直。一些方法:如相似、三角函数、解方程。一些转换:如轴对称、平移、旋转。 二、典型例题: (一)、求解析式
1.(2014莱芜)过A(1,0)、B(3,0)作x轴的垂线,分别交直线y=4﹣x于C、D两点.抛物线y=ax2+bx+c经过O、C、D三点.(1)求抛物线的表达式; 2.(2012莱芜)顶点坐标为(2,﹣1)的抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点.(1)求抛物线的表达式;
练习:(2014兰州)把抛物线y=﹣2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为( )Ay=﹣2(x+1)2+2By=﹣2(x+1)2﹣2Cy=﹣2(x﹣1)2+2Dy=﹣2(x﹣1)2﹣2 (二)、二次函数的相关应用 第一类:面积问题
例题.(2012莱芜)如图,顶点坐标为(2,﹣1)的抛物线y=ax2+bx+c(a≠0)与y
轴交于点C(0,3),与x轴交于A、B两点.
(1)求抛物线的表达式;(抛物线的解析式:y=(x
二次函数压轴题解题技巧分类总结精华 一对一辅导必备
---二次函数
1
中考压轴题解析
二次函数常见压轴
y=x?2x?3(以下几种分类的函数解析式就是这个)
2和最小,差最大 在对称轴上找一点P,使得PB+PC的和最小,求出P点坐标
在对称轴上找一点P,使得PB-PC的差最大,求出P点坐标
y
B O C D A x 求面积最大 连接AC,在第四象限找一点P,使得?ACP面积最大,求出P坐标
讨论直角三角 连接AC,在对称轴上找一点P,使得?ACP为直角三角形,求出P坐标
或者在抛物线上求点P,使△ACP是以AC为直角边的直角三角形.
y B O C D y A x
讨论等腰三角 连接AC,在对称轴上找一点P,使得?ACP为等腰三角形,求出P坐标
B O C D
A x 2
讨论平行四边形 1、点E在抛物线的对称轴上,点F在抛物线上,且以B,A,F,E四点为顶点的四边
形为平行四边形,求点F的坐标
y B O C D A x 2、这里小改动,把C(0,-3)改成C(2,-3)
连接BC,在x轴上找一个点F,抛物线上找一点P,使得以B、C、F、G为顶点的四边形构成平行四边形
y B O D A x
初中数学解题技巧
1. 配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2. 因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角函数等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3. 换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4. 判别式法与韦达定理
一元二次方程ax2 bx c=0(a、b、c∈R,a≠0)根的判别式△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函
初中数学解题技巧
1. 配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2. 因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角函数等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3. 换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4. 判别式法与韦达定理
一元二次方程ax2 bx c=0(a、b、c∈R,a≠0)根的判别式△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函
中考数学二次函数压轴题题型归纳
页眉内容
中考二次函数综合压轴题型归类
一、常考点汇总
1、两点间的距离公式:()()22B A B A x x y y AB -+-=
2、中点坐标:线段AB 的中点C 的坐标为:???
??++22B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系:
(1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠
(3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k
3、一元二次方程有整数根问题,解题步骤如下:
① 用?和参数的其他要求确定参数的取值范围;
② 解方程,求出方程的根;(两种形式:分式、二次根式)
③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。
例:关于x 的一元二次方程()0122
2=-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上)
例:若抛物线()3132
+++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定此抛物线的解析式。
5、方程总有固定根问题,可以通过解方程的方法求
初中数学二次函数复习专题(1)
试题宝典 http://www.shitibaodian.com 试题、教案、课件、论文,免费提供!
初中数学二次函数复习专题
〖知识点〗二次函数、抛物线的顶点、对称轴和开口方向 〖大纲要求〗
1.理解二次函数的概念;
2.会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,
会用描点法画二次函数的图象; 3.会平移二次函数y=ax2(a≠0)的图象得到二次函数y=a(ax+m)2+k的图象,了
解特殊与一般相互联系和转化的思想; 4.会用待定系数法求二次函数的解析式;
5.利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x轴的
交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之
间的联系。
内容
(1)二次函数及其图象
如果y=ax+bx+c(a,b,c是常数,a≠0),那么,y叫做x的二次函数。 二次函数的图象是抛物线,可用描点法画出二次函数的图象。 (2)抛物线的顶点、对称轴和开口方向 抛物线y=ax+bx+c(a≠0)的顶点是(?22
b2a,4ac?b4a2对称轴是x??),
b2a,当a>0时,
抛物线开口向上,当a<0时,抛物线开口向下。
抛物线y=a(x+h)2+k(a≠0)的顶点是(-h,k),对称轴是
初中数学二次函数专题复习教案
初中数学二次函数专题复习
初中数学二次函数复习专题
〖知识点〗二次函数、抛物线的顶点、对称轴和开口方向 〖大纲要求〗
1. 理解二次函数的概念;
2. 会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会
用描点法画二次函数的图象;
3. 会平移二次函数y=ax2(a≠0)的图象得到二次函数y=a(ax+m)2+k的图象,了解特殊与一般相互联系和转化的思想;
4. 会用待定系数法求二次函数的解析式;
5. 利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x轴的交点
坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系。
内容
(1)二次函数及其图象
如果y=ax2+bx+c(a,b,c是常数,a≠0),那么,y叫做x的二次函数。 二次函数的图象是抛物线,可用描点法画出二次函数的图象。 (2)抛物线的顶点、对称轴和开口方向 抛物线y=ax+bx+c(a≠0)的顶点是(
2
b2a
,
4ac b4a
2
),对称轴是x
b2a
,当a>0时,
抛物线开口向上,当a<0时,抛物线开口向下。 抛物线y=a(x+h)2+k(a≠0)的顶点是(-h,k),对称轴是x=-h. 〖考查重点与常见题型〗
1. 考查二次函数的
中考数学二次函数压轴题精编(含答案)
(2010湖北咸宁)16.如图,一次函数y?ax?b的图象与x轴,y轴交于A,B两点,
k
的图象相交于C,D两点,分别过C,D两
y x
D 点作y轴,x轴的垂线,垂足为E,F,连接CF,DE. B 有下列四个结论: A O x F ①△CEF与△DEF的面积相等; ②△AOB∽△FOE;
E C ③△DCE≌△CDF; ④AC?BD.
其中正确的结论是 .(把你认为正确结论的序号都填上) (第16题) (2010江苏徐州)25.(本题8分)如图,已知A(n,-2),B(1,4)是一次函数y=kx+b的图象和反比例函
与反比例函数y?数y=
m的图象的两个交点,直线AB与y轴交于点C. x (1)求反比例函数和一次函数的关系式; (2)求△AOC的面积; (3)求不等式kx+b-
m<0的解集(直接写出答案). xy 3 2 1 A -3 -2 -1 O 1 2 3 x -1 121. (2009遂宁)把二次函数y??x2?x?3用配方法化成y?a?x?h??k的形式 B -2 4A.y??1?x?2?2?2 B. y?1?x?2?2?4
4411?C.y??1?x?2?2?4 D. y???x???3 42??22-3 (第21题)
2. (2009嘉兴)已知a?0,在同一直角坐标系中,函数y?ax与y?ax2的图象有可能是( ▲ )
yy?1yy1Ox?1O1x?1O1x?1O1xABCD
3. (2009烟台)二