一次函数的应用知识点

“一次函数的应用知识点”相关的资料有哪些?“一次函数的应用知识点”相关的范文有哪些?怎么写?下面是小编为您精心整理的“一次函数的应用知识点”相关范文大全或资料大全,欢迎大家分享。

一次函数(知识点+题型)

标签:文库时间:2025-01-31
【bwwdw.com - 博文网】

初二(上)数学 知识改变命运创造未来

【教学标题】一次函数 【教学目标】

1、 正比例函数和一次函数的概念及性质,知道正比例函数和一次函数的图像形状、位置与

解析式的关系,会用待定系数法确定函数的解析式,能运用函数知识解决一些实际问题; 2、 掌握数学解题的几种常用方法:数形结合、分类讨论、待定系数法等; 3、提高分析问题和应用函数知识解决实际问题的能力。

【重点难点】

一次函数与面积相关题型 【教学内容】

1、一次函数和正比例函数(重点)

一般地,形如y=kx+b(k、b是常数,k≠0)的函数,叫做一次函数,其中k一次项系

1数(以后的学习中我们常称作斜率),例如y=2x-1,y=2x等都是一次函数。特别地,当一

次函数y=kx+b中的b为0时,函数y=kx(k是常数,k≠0)叫做正比例函数。例如y=2x,y=-3x等都是正比例函数。

正比例函数是一次函数的特例,一次函数包括正比例函数。一次函数和正比例函数的关系如图所示,就像等边三角形与等腰三角形的关系一样。 例1:下列函数,那些是一次函数?哪些是正比例函数?

x8y??y??2y

一次函数(知识点+题型)

标签:文库时间:2025-01-31
【bwwdw.com - 博文网】

初二(上)数学 知识改变命运创造未来

【教学标题】一次函数 【教学目标】

1、 正比例函数和一次函数的概念及性质,知道正比例函数和一次函数的图像形状、位置与

解析式的关系,会用待定系数法确定函数的解析式,能运用函数知识解决一些实际问题; 2、 掌握数学解题的几种常用方法:数形结合、分类讨论、待定系数法等; 3、提高分析问题和应用函数知识解决实际问题的能力。

【重点难点】

一次函数与面积相关题型 【教学内容】

1、一次函数和正比例函数(重点)

一般地,形如y=kx+b(k、b是常数,k≠0)的函数,叫做一次函数,其中k一次项系

1数(以后的学习中我们常称作斜率),例如y=2x-1,y=2x等都是一次函数。特别地,当一

次函数y=kx+b中的b为0时,函数y=kx(k是常数,k≠0)叫做正比例函数。例如y=2x,y=-3x等都是正比例函数。

正比例函数是一次函数的特例,一次函数包括正比例函数。一次函数和正比例函数的关系如图所示,就像等边三角形与等腰三角形的关系一样。 例1:下列函数,那些是一次函数?哪些是正比例函数?

x8y??y??2y

一次函数知识点、经典例题、练习

标签:文库时间:2025-01-31
【bwwdw.com - 博文网】

一次函数及其性质

? 知识点一 一次函数的定义 一般地,形如y?kx?b(k,b是常数,k?0)的函数,叫做一次函数,当b?0时,即y?kx,这时即是前一节所学过的正比例函数.

⑴一次函数的解析式的形式是y?kx?b,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.

⑵当b?0,k?0时,y?kx仍是一次函数. ⑶当b?0,k?0时,它不是一次函数.

⑷正比例函数是一次函数的特例,一次函数包括正比例函数.

? 知识点二 一次函数的图象及其画法

⑴一次函数y?kx?b(k?0,k,b为常数)的图象是一条直线.

⑵由于两点确定一条直线,所以在平面直角坐标系内画一次函数的图象时,只要先描出两个点,再连成直线即可.

①如果这个函数是正比例函数,通常取?0,0?,?1,k?两点;

??②如果这个函数是一般的一次函数(b?0),通常取?0,b?,??,0?,即直

k??b线与两坐标轴的交点.

⑶由函数图象的意义知,满足函数关系式y?kx?b的点?x,y?在其对应的图象上,这个图象就是一条直线l,反之,直线l上的点的坐标?x,y?满足y?kx?b,也就是说,直线l与y?kx?b是一一对应的,所以通常把一次函数y?kx?b的图象叫做直

一次函数25.5 一次函数的应用

标签:文库时间:2025-01-31
【bwwdw.com - 博文网】

《一次函数》常考题一次函数的应用

解答题

151.(2004?福州)如图所示,l1和l2分别表示一种白炽灯和一种节能灯的费用y(元)与照明时间x(小时)的函数关系图象,假设两种灯的使用寿命都是2000小时,照明效果一样.(费用=灯的售价+电费) (1)根据图象分别求出l1,l2的函数关系式; (2)当照明时间为多少时,两种灯的费用相等?

(3)小亮房间计划照明2500小时,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法.

152.(2001?南京)某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药后2小时时血液中含药量最高,达每毫升6微克(1微克=10毫克),接着逐步衰减,10小时时血液中含药量为每毫升3微克,每毫升血液中含药量y(微克),随时间x(小时)的变化如图所示. 当成人按规定剂量服药后,

(1)分别求出x≤2和x≥2时,y与x之间的函数关系式;

(2)如果每毫升血液中含药量为4微克或4微克以上时在治疗疾病时是有效的,那么这个有效时间是多长?

﹣3

153.(2002?大连)某批发商欲将一批海产品由A地运往B地,汽车货运公司和铁路货运公司均开办了海产品运输业务.已知运输路程为120千米,

一次函数知识点总结与常见题型

标签:文库时间:2025-01-31
【bwwdw.com - 博文网】

一次函数知识点总结与常见题型

基本概念

1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。

例题:在匀速运动公式s?vt中,v表示速度,t表示时间,s表示在时间t内所走的路程,则变量是________,常量是_______。在圆的周长公式C=2πr中,变量是________,常量是_________.

2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其

对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。

*判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应

11

例题:下列函数(1)y=πx (2)y=2x-1 (3)y= (4)y=-3x (5)y=x2-1中,是一次函数的有( )

x2(A)4个 (B)3个 (C)2个 (D)1个

3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 4、确定函数定义域的方法:

(1)关系式为整式时,函数定义域为全体实数;(

一次函数的应用

标签:文库时间:2025-01-31
【bwwdw.com - 博文网】

一次函数的应用

◆【课前热身】

1.在平面直角坐标系中,函数y??x?1的图象经过( )

A.一、二、三象限 B.二、三、四象限 C.一、三、四象限 D.一、二、四象限

2.小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是( ) A.12分钟

B.15分钟

C.25分钟

D.27分钟

3.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量为( )

y(元)900300O3050(kg)x

A.20kg B.25kg C.28kg D.30kg 4.一次函数y?2x?3的图象不经过( )

A.第一象限 B.第二象限 C.第三象限 D.第四象限 ◆【考点聚焦】

??一般式y=kx+b(k?0)概念???正比例函数y=kx(

一次函数的应用

标签:文库时间:2025-01-31
【bwwdw.com - 博文网】

一次函数的应用

姓名:

基础题型演练:

1、某出版社出版一种适合中学生阅读的科普读物,若该读物首次印刷的印数不少于5000册时,投入的成本与印数间的相应数据如下:

次函数,求这个一次函数的解析式(不要求写出x的取值范围);

(2)如果出版社投入48000元,那么能印读物多少册?

2、为加强公民的节水意识,某城市制定了以下用水收费标准:每户每月用水未超过7 m3时,每立方米收费1.0元并加收0.2元的城市污水处理费;超过7 m3的部分每立方米收费

1.5元并加收0.4元的城市污水处理费.设某户每月用水量为x(m3),应交水费为y(元).

(1)分别写出未超过7 m3和多于7 m3时,y与x的函数关系式;(2)如果某单位共有50户,某月共交水费541.6元,且每户的用水量均未超过10 m3,求这个月用水未超过7 m3的用户最多可能有多少户?

3、如图,折线ABC是在某市乘出租车所付车费y(元)与行车里程x(km) 之间的函数关系图象. ①根据图象,写出当x≥3时该图象的函数关系式; ②某人乘坐2.5km,应付多少钱?

③某人乘坐13km,应付多少钱?

④若某人付车费30.8元,出租车行驶了多少千米?

例1:学校有一批复印任务,原来有甲复印社承接,按每100页40元计费.

16一次函数的应用

标签:文库时间:2025-01-31
【bwwdw.com - 博文网】

一次函数的应用

一、选择题

1、(2012年福建福州质量检查)方程x2+3x-1=0的根可看作是函数y=x+3的图象与函1

数y=的图象交点的横坐标,那么用此方法可推断出方程x3-x-1=0的实数根x0所在的

x范围是

A.-1<x0<0 B.0<x0<1 C.1<x0<2 D.2<x0<3 答案:C

2、(2012山东省德州三模)用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象如图所示,则所解的二元一次方程组是( )

?x?y?2?0,?2x?y?1?0,?2x?y?1?0,y A.? B.? C.? ?3x?2y?1?0?3x?2y?1?0?3x?2y?5?03 ?x?y?2?0,D.?

2x?y?1?0?答案:D

2 1 ·P (1,1)O x -1 1 2 3 -1 (第7题图)

3、(2012上海市奉贤调研试题)小亮从家步行到公交车站台,等公交车去学校.图中的折线表示小亮的行程s?km?与所花时间t?min?之间的函数关系,下列说法错误的是( )

A.他离家8km共用了30min; B.他等公交车时间为6m

正反比例函数和一次函数二次函数知识点汇总

标签:文库时间:2025-01-31
【bwwdw.com - 博文网】

正比例函数和一次函数

1、正比例函数和一次函数的概念

一般地,如果y?kx?b(k,b是常数,k?0),那么y叫做x的一次函数。

特别地,当一次函数y?kx?b中的b为0时,y?kx(k为常数,k?0)。这时,y叫做x的正比例函数。

2、一次函数的图像

所有一次函数的图像都是一条直线

3、一次函数、正比例函数图像的主要特征:

一次函数y?kx?b的图像是经过点(0,b)的直线;正比例函数y?kx的图像是经过原点(0,0)的直线

一次函数

(1) 一次函数的性质:y=kx+b(k、b为常数,k ≠0)当k >0时,y的值随x的值增大而增大;

当k<0时,y的值随x值的增大而减小.

⑷.直线y=kx+b(k、b为常数,k ≠0)时在坐标平面内的位置与k在的关系.

① ② ③ ④

直线经过第一、二、三象限(直线不经过第四象限); 直线经过第一、三、四象限(直线不经过第二象限); 直线经过第一、二、四象限(直线不经过第三象限); 直线经过第二、三、四象限(直线不经过第一象限

正比例函数

4、正比例函数的性质

一般地,正比例函数y?kx有下列性质:

(1)当k>0时,图像经过第一、三象限,y随x的增大而增大;

高中数学知识点《函数与导数》《基本初等函数与应用》《一次函数

标签:文库时间:2025-01-31
【bwwdw.com - 博文网】

高中数学知识点《函数与导数》《基本初等函数与应用》《一次函数与二次函数》精选课后作业【56】(含答案考点及

解析)

班级:___________ 姓名:___________ 分数:___________

1.已知偶函数

【答案】

在单调递减,.若,则的取值范围是__________.

【考点】高中数学知识点》函数与导数》函数》函数的单调性与最值 【解析】因为调递减,所以

是偶函数,所以不等式

,解得.

,又因为

上单

考点:本小题主要考查抽象函数的奇偶性与单调性,考查绝对值不等式的解法,熟练基础知识是

关键.

2.已知函数f(x)的定义域为[-1,5],部分对应值如下表: x f(x)

f(x)的导函数y=f′(x)的图象如图所示.

-1 1 0 2 4 2 5 1

下列关于函数f(x)的命题: ①函数y=f(x)是周期函数; ②函数f(x)在[0,2]上是减函数;

③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4; ④当1

【答案】D

【考点】高中数学知识点》函数与导数》函数》函数的单调性与最值

【解析】①显然错误;③容易造成错觉,tmax=5;④错误,f(2)的不确定影响了正确性;②正确,可有f′(x)<0得到.

3.函数f(